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Introduction

OH: Thursdays from 1:00-3:30.
Grading: 20% HW, 10% attendance. 30% Midterm, 40% Final Exam. Homework due every tuesday in class.

1 Q and R
Study of class is sequences, series and functions, convergence, continuity, differentiability and integrability. In order
to do this, we need an idea of numbers.
In order to do this, we extend Z→ Q→ R→ C.
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1.1 Ring Theory, Rev

N,Z+,Z∗ : 1, 2, 3, ...

Z≥0 : 0, 1, 2, 3...

Z : ...− 5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5...

Integers are an integral domain. We want the field extension of Z, so we create the multiplicative inverse of every
object.

Q :
m

n

∣∣∣ {m,n ∈ Z, n > 0, gcd(m,n) = 1}

Definition 1.1 (Field). Every field (F,+,×) must satisfy the following three conditions:

• (F,+) is an abelian group with identity 0.

– + is a binary operator on F, F is closed under +.

– + is associative, e.g. for a, b, c ∈ F, we have (a+ b) + c = a+ (b+ c).

– ∃e ∈ F such that ∀f ∈ Fe+ f = f + e = e.

– Every element is invertible. ∀f ∈ F∃(−f) : f +−f = e+.

– + commutes. for a, b ∈ F, we have a+ b = b+ a.

• (F,+,×) is a commutative, unital ring.

– F is closed under ×.

– (F,×) associates.

– ∃e× such that for every f ∈ F, e× × f = f × e× = f .

– × commutes.

– (+,×) distribute. For a, b, c ∈ F, (a+ b)× c = (a× c) + (b× c).

notice that in Q, there is no inverse for 0. Any nonzero element, however, has a multiplicative inverse.

Statement 1.1 ((Q, <) is ordered.).
a < b⇔ a+ (−b) < 0

1.2 Ordered Sets/Upper Bounds

Definition 1.2 (Ordered Set). (X,≺) is an ordered set if the following hold.

• for any two x, y ∈ X, one and only one of the following holds:

x ≺ yy ≺ x
y = x

.

• For any x ≺ y, y ≺ z we have x ≺ z.

Example 1.2.1 (Power Set). We want to know if (2x,⊆) is ordered. Let’s consider the examples A = {1, 2}, B =
{−1, 0} ∈ 2Z. Partially ordered.

Lemma 1.0.1. If (X,≺) is ordered, we can conclude that any S ⊆ X ⇒ (S,≺) is ordered.

The preceding lemma gives us some notion of upper and lower bounds for a subset S ⊆ S.

Definition 1.3 (Upper Bound). The upper bound for a subset S ⊆ X is x ∈ X such that ∀a ∈ S
{
a ≺ x
a = x

.

Example 1.2.2. • X = Q, S = Q, then S has no upper bound.

• S = {x ∈ Z|x2 ≤ 2} ⊆ Z. 1 is an upper bound.

Definition 1.4 (Least Upper Bound). For S ⊆ X with (X,<) ordered, an element x0 ∈ X is the least upper bound
of S if
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• x0 is an upper bound of S in X.

• Any upper bound x of S satisfies x ≥ x0.

We call the least upper bound supX S.

Lemma 1.0.2 (Least Upper Bound is Unique). The least upper bound, when it exists, is unique.

Proof. Take some x1, x2 as least upper bounds of S. Then x1, x2 both upper bounds of S. Since, we the definition of
upper bound, and both are the least, x1 ≺ x2, and x2 ≺ x1, so x1 = x2.

Consider the question of whether, with some set of upper bounds, must a least upper bound exist?
Consider the following

Example 1.2.3. X = Q, with S = {x ∈ Q|x2 ≤ 2} ⊆ Q}.

I think this is going to introduce us to the concept of limiting polynomials until we find weird solutions like
√

2.
Continuing the previous example, we have a bunch of upper bounds, e.g. 2, and every rational larger than 2 is an
upper bound.
We can check that 1.5 is an upper bound is an upper bound.
If we take the set of upper bounds, we draw it like

1 2?

Bassically, we already know how to prove
√

2 isn’t rational, so we want to take some

x = x0 − x2
0−2
x0+2 ∈ Q x > x0

x2 = 2 +
2(x2

0−2)
(x0+2)2 < 2 x ∈ S

}
⇒ x0 is not an upper bound, since this is a contradiction

Now, we want to find x < x0 such that x is an upper bound.

Definition 1.5 (Least Upper Bound Property). Say that an ordered set (X,≺) has the least upper bound property
if any S ⊆ X with some upper bound has the least upper bound.

1

1.3 Constructing the Reals

We want some field R so that we preserve all the operations of Q as a field. We also want these to be compatible with
each other, e.g. equivalence relations, ordering remain the same.

Definition 1.6 (Ordered Field). Let X be a set with
(X,+,×) field

(X,≺) ordered set

}
is an ordered field if

1. x ≺ y, z ∈ X ⇒ x+ z ≺ y + z.

2. x > 0, y > 0⇒ x× y > 0.

Maybe we consider taking the power set of Q, and choose special elements from the power set to get the reals.
Consider 2Q, the power set of Q, the set of all subsets of Q.
How do we realize Q ⊆ 2Q? Let’s make an injective map from Q→ 2Q

ϕ : Q→ 2Q

Q ∼= ϕ(Q) ⊆ 2Q

Since we force ϕ injective, we want it to fulfill the property that

ϕ(q1) = ϕ(q2)⇒ {x ∈ Q|x < q1} = {x ∈ Q|x < q2}

We can get an inverse map for ϕ, namely the supremum. We can make a dedekind cut

1TODO: does it mean to be ordered if only one S ⊆ X has the LUB, or if all subsets have it. Doesn’t that definition reference itself in
its own construction?
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Definition 1.7 (Cut). A cut is defined by

1. C ⊆ QC 6= ∅, C 6= Q

2. if c ∈ C, then for any x < c, x ∈ C.

3. If c ∈ C, then we can find some x ∈ (−∞, q)
C

so that x > c.

We already checked that every element in ϕ(Q) is a cut, but not every cut is in ϕ(Q).

One set that is a cut, but does not live in the image of ϕ is

{
x ∈ Q| x

2 < 2
orx < 0

}
.

Dedekind then allows us to define the reals as the set of all cuts. Let R = the set of all cuts. We need to add on
addition and multiplication.

q1 7→ (−∞, q1)
+ +
q2 7→ (−∞, q2)

q1 + q2 7→ (−∞, q1 + q2)

Same goes for multiplication. We can demonstrate that this becomes an ordered field. Check the appendix in rudin.

Theorem 1.1 (Dedekind). (R,+,×,⊂) is an ordered field as an extension of (Q,+,×, <).

Example 1.3.1 (Writing down
√

2). This is as simple as taking the interval {x ∈ Q|2 < 2 or x < 0}.2

Definition 1.8 (Maximum, Minimum). Consider (X,<), S ⊆ X. Then

supx S infx S
maxx S minx S

For the maximum, minimum functions, we add the additional requirement that maxS ∈ S, and that minS ∈ S. There
is no such requirement for the supremum, infimum.

Recall our definition of R as the set of cuts in Q, such that a cut satisfies various properties.3

It also has the least upper bound property.

Theorem 1.2 (Archimedian Property of R.). For any x ∈ R+, y ∈ R, then ∃n ∈ Z+ so that n · x > y.4

Lemma 1.2.1 (Boundedness of R). For any y ∈ R, we can find n ∈ Z+ so that n · 1 = n > y.

Proof. Assume that there is no such n such that n > y. This directly implies that n ≤ y∀n ∈ Z+. This implies that y
is an upper bound on Z+, and, by the LUB property, Z+ must have least upper bound x0.
Consider the element x0 − 1 < x0, and assume it to be the upper bound of Z. x0 − 1 is not an upper bound of Z+, so
we can find N ∈ Z+ so that x0 < x0 + 1, this contradicts the assumption that x0 is an upper bound of Z+. Thus, Z
cannot have a least upper bound, which gives the above paragrpah is a contradiction.

This allows us to prove the general case.

Proof. x ∈ R+, y ∈ R. Consider y
x ∈ R, since R is a field. Now, we apply the proven Lemma 1.2.1 to say that ∃n ∈ Z+

so that n > y
x . Since R is an ordered field, we’re allowed to take the following: n · x > y. But we now have the

archimedian property as stated above, so we’re done.

Theorem 1.3 (Q is dense in R). For any a, b ∈ R such that a < b, we can find some x ∈ Q such that a < x < b.

Proof. Take n,m ∈ Z, with n > 0. Now we have the statement a < m
n < b → an < m < bn. We take bn − an =

(b− a)n > 0, and by the archimedian property, we found some positive integer such that b− a > 1, so we’re done.

Lemma 1.3.1. For α, β ∈ R, α < β, and β − α > 1, then there exists some m ∈ Z such that α < m < β.

2I wonder how you’d write down pi?
3We need to prove (see Rudin) that this is indeed an ordered field.
4e.g. the cut of x, Cx ) (−∞, 0).
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1.4 The Root Operation

R is closed under taking roots. Also, the definition of the root operation is unique. We are going to need to prove
these things.

1.5 The Reals as an Ordered Field

Definition 1.9 (±∞). • supS =∞ if S has no upper bound

• supS = −∞ if S has no lower bound
It is hard to extend addition, multiplication to R ∪ {+∞,−∞}.
We can extend R to larger structures by taking

R2 = R× R = {(x, y)|x ∈ R, y ∈ R}

Gives the x, y plane. We have operations of addition and scalar multiplication, as defined per usual in a vector space.

2 Basic Topology

We have countable, uncountable sets. Countable sets, finite sets are both called at most countable sets.
Finite sets have a bijective map between a finite set of Z+ and the set.

Definition 2.1 (Countable Sets). A set X is called countable if there exists a bijection from Z to X.

Last time, we showed that Q is countable using two lemmas.

Lemma 2.0.1 (Direct Products of Countable Sets are Countable). X,Y countable sets implies that X×Y = {(x, y)|x ∈
X, y ∈ Y } is also countable.

Lemma 2.0.2 (Subsets of Countable Sets are at Most Countable). X countable ⇒ any S ⊆ X is at most countable.

2.1 The Reals are Not Countable

We want to demonstrate that R is uncountable. We should consider the direct product of an infinite number of
countable sets, and find out whether or not it is countable.

Theorem 2.1 (R is uncountable). There is no bijective function from Z+ → R.

We’ve already shown that every r ∈ R has a decimal representation, so we can realize every decimal representation as
the cartesian product

Z×
⊗
i∈Z

Z≥0

The even simpler version is that we are taking

±1×
⊗
i∈Z
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Even easier, we can consider the set of sequences consisting of only binary digits, e.g.
⊗
{0, 1}.

Our question now becomes whether we are able to find a bijective function from Z+ → B. We want to show that we
cannot.

Lemma 2.1.1 (B is uncountable). There is no bijective function from Z+ to B.

Proof. Assume that there exists some f : Z+ → B such that f is bijective. Then, we should have that f(n) =
(xn1 , x

n
2 , x

n
3 . . . ). We introduce the function

− : B → B

x 7→
{

0 x = 1
1 x = 0

From every number on the diagonal, we construct a new element s̄ = (x̄1
1, x̄

2
2, . . . ). Then s̄ is not in the image of f . If

s̄ = f(n) for some n, then x̄nn = xnn, which is a contradiction.

We can easily prove Theorem 2.1 by noticing that by Lemmas 2.0.2 and 2.1.1, R cannot be countable, so we’re done .
The thing is, uncountable sets are weird. We want to come up with nicer, countable ways to think about uncountable
sets. Sequences of representation are one good way. A better way is a compact set, which she will explain later I
guess?
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2.2 Metric Spaces and Topology

Topology is basically a rigorous way of defining the “neighborhood” of a point.

We start by defining the absolute value function

Definition 2.2 (Absolute Value).

|x| =

 x x > 0
0 x = 0
−x x < 0

We introduce the concept of a distance function

Definition 2.3 (Distance Function). In general if X is a set, a function d : X ×X → R is called a distance function
if it satisfies the following properties

1. d ≥ 0 and d(x, y) = 0 iff x = y.

2. d(x, y) = d(y, x).

3. It satisfies the triangle inequality: for any 3 points x1, x2, x3 ∈ X, d(x1, x2) + d(x2, x3) ≥ d(x1, x3).

Definition 2.4 (Metric Space). A set X equipped with such a distance function d yields the object (X, d) which is
called a metric space.

Example 2.2.1. (R, d) with d(x, y) = |x− y| is a metric space.

Example 2.2.2. 2-d euclidean space is just the metric space (R2, d) where d is defined by

d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2

We can also represent the complex numbers as such a metric space, with

d(z1, z2) =
√

(z1 − z2)(z̄1 − z̄2)

Definition 2.5. A subset S of X is called an open set if any x0 ∈ S, there exists r > 0 so that Br(x0) ⊆ S.

She lists a fact, that Br(x0) is open. I kind of forget what Br means because I zoned out here, so see the footnote for
a todo!5

Ok, so let,s take some arbitrary x ∈ Br(x0). This means that d(x, x0) < r, so we want r′ > 0, so that Br′(x) ⊆ Br(x0)
This might look like

x0

x

where the red is r, blue is r′.
Both the empty set, X are open. Intersection of open sets are open. Union of arbitrarily many open sets are open.
We will prove these. There are six minutes left in the lecture, so idk how much we’re going to get through today.
Ok, we have S1, S2 open, take S1 ∩ S2 3 x0., gives x0 ∈ S1, x0 ∈ S2.
Recall from last time, for X, d a metric space, we have open sets

5TODO: what does Br mean again??
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1. ∅, X are both open

2. The intersection of two open sets S1, S2 is also open.

3. Sα, ∀α ∈ Λ are open impies their union is also open.

We didn’t prove the third one, let’s do it now.

Proof. x ∈
⋃
α∈Λ Sα ⇒ ∃α ∈ Λ so that x ∈ Sα. Because Sα is open, there is some r > 0 so that Br(x) ⊆ Sα ⊆

⋃
α∈Λ.

This proves the union is open.

Property 2 only works for finitely many sets. We can take limiting sets and get them down to a single point (e.g.⋂
α∈Z+(− 1

n ,
1
n )→ {0}). We can prove this.

Proof. Let In = (− 1
n ,

1
n ), n ∈ Z+. We want some x 6= 0 ∈

⋂∞
n=1 In, so assume |x| > 0, n ∈ Z+, we can assume some

1
n < |x|, and use the archimedian property of R to show a contradiction.

This comes equipped with an idea of closed sets

Definition 2.6 (Closed Set). A subset S ⊆ X is called closed if X \ S is open.

Clsoed sets have the following properties

1. ∅, X are closed

2. S1, S2 closed implies that S1 ∪ S2 closed.

3. The intersection of closed sets are closed (only for finitely many).

We can just try taking the union of Īn, with Īn = [−1 + 1
n , 1−

1
n ].

Definition 2.7 (Limit Point). Let S ⊆ X. Then an element x ∈ X is called a limit point of the subset S if any
Br(x), r > 0 contains some point in S and different from x.

S1 x x0

x is a limit point of S1, but x0 is not.

Definition 2.8 (Isolated Point). An isolated point is a point in S but not in S′.

Definition 2.9 (Closure). The closure of a set S is the union with it’s limit. S̄ = S ∪ S′.

Proposition 2.1 (Closure of any set is closed). S̄ is closed.

Proof. It’s sufficient to show that the complement is open. Let’s take S̄c, and find Br(x) ⊆ S̄c with r > 0. If tehre is
no such r > 0, then for any r > 0, Br(x) 6⊆ S̄c, so ∃y ∈ Br(x) ∩ S̄. Since S̄ = S ∪ S′, we have y ∈ S or y ∈ S′.
If y ∈ S, we’re done.
If y /∈ S, then y ∈ S′, then ∃z ∈ Br(x)∩ S. We just walk along y, z recursively, which givea a contradiction. I need to
understand this better.:w

This gives a nice way of thinking about what it means to be “dense”. Q is dense in R just means that Q̄ = R.

Proposition 2.2. S̄ is the smallest closed set that contains S.

Proof. We can take Sα ⊇ S, with Sα closed. Then S̄ =
⋂
Sα
Sα, S̄ = Sα, so S̄ ⊇ Sα. The rest is left as HW.

Definition 2.10 (Sequence). A sequence is a set defined by a map f : Z+ → X, where

f : Z+ → X
n 7→ xn
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Definition 2.11 (Limit). Let xn a sequence in X, A point x ∈ X is called a limit of xn if

lim
n→∞

d(xn, x) = 0

For any ε > 0, we can find N ∈ Z+ such that any n > N, d(xn, x) < ε.

Lemma 2.1.2 (Limits are Unique). If a limit exists, limxn = x = x′, then x′ = x.

Proof. Assume x, x′ are both limits of {xn}. Then, we can try to estimate d(x, x′) ≤ d(x, xn) + d(xn, x
′).

Because xn → x, for any ε > 0, we can find N,n > N , such that d(xn, x0) < ε
For x′, we can find the same ε > 0, with N ′ such that and n > N ′, we have d(xn, x0) < ε.
Now, take n > max{N,N ′}, then we have d(xn, x0) < ε and d(xn, x

′) < ε.
Applying the triangle inequality again gives that d(x, x′) ≤ d(xn, x) + d(xn, x

′) < 2ε. It follows from this that
d(x, x′) < 0. If it’s in R, so there’s always some ε such that 2ε is smaller, which means they must be the same point,
which in the metric space, is equivalent to saying x = x′.

Every sequence that converges does so uniquely. But, sometimes sequences will diverge.

Example 2.2.3. {xn = (−1)n} is divergent.

Proof. Assume x0 ∈ R is a limit. We have that of |x0 − 1|, |x0 + 1|, at least one is not zero. Call this nonzero element
ε0. WLOG assume ε0 = |x0 − 1|. Consider ε = 1

2ε0. For any N , we can find n > N .

Proposition 2.3. S ⊆ X a point x ∈ X is a limit point of S if any only if there exists some sequence {xn} in S with
xn 6= x so that xn → x.

Proof. ⇒: Assume x is a limit point of S. Consider balls B 1
n

(x) contains some point xn 6= x. Then, looking at the

sequence {xn}, d(xn, x) < 1
n . We can take ∀ε > 0, N such that 1

N < ε, then any n > N , fulfills 1
n <

1
N < ε. This proes

that xn → x as n→∞.
⇐. xn → x, xn 6= x, xn ∈ S. Take any Br(x), then ∃N so that any n > N implies d(xn, x) < r ⇔ xn ∈ Br(x), so
we’re done.

A corollary of this is that if any convergent sequence has it’s limit in S, then the set S must be closed.

Definition 2.12 (Sequential Compactness). A subset S ⊆ X is called sequentially compact if any sequence {xn}
in S has a convergent subsequence in S, which is convergent in S.

Example 2.2.4. We’ve alreadyt shown that {xn = (−1)n+1}. But we can take a subsequence xnk = (−1)2k+1 = −1}
converges to −1. Likewise for even integers it converges to one.

Example 2.2.5. Let F ⊆ X |F | <∞. Then, claim is that F is sequentially compact. Take some sequence {xn}. We
want to show it has a constant subsequence.

We are going to take a few lectures to prove the next result.

Theorem 2.2 (Heine-Borel). [0, 1] ⊆ R is sequentially compact.

It’s fairly intuitive to see why sets like (0, 1) aren’t sequentially compact, since this converges to 1, but 1 is not in the
set.

Definition 2.13 (Compactness). A subset S ⊆ X is called compact if any open cover of S has a finite subcover.

Definition 2.14 (Open Cover). An open cover {Uα|α ∈ Λ} is a collection in X such that
⋃
α∈Λ ⊇ S.

Definition 2.15 (Finite Cover). A cover with |Λ| <∞.

Definition 2.16 (Subcover). A subset A ⊆ Λ of the index set, and take {Uα|α ∈ A} is the union, but it also must
cover S.

Theorem 2.3. (X, d). K ⊆ X is compact if and only if K is sequentially compact.

Proof. We will show the forward direction. Want to let {xn} a sequence in K. we want to show that there exists
some subsequence {xnk}, so that xnk converges to x∞ ∈ K as k → ∞. Assume for the sake of contradiction that no
such subsequence exists. Then, any x ∈ K is not a limit of a subsequence from {xn}. But, we can find rx > 0 so that
Brx(x) ∩K contains at most one point from {xn}, which ∀x ∈ K, {Brx(x)|x ∈ K} is an open cover of K.
K is compact, so it has a finite subcover, x1, x2, . . . , xn, so take Brx

n, . . . , then
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• Cover K ⊆ {xn}.

• At most contains one point from {xn}.

→ ∃ some Brx̃(x̃) x̃ from teh finite subcover.

Theorem 2.4. {Kα|α ∈ Λ} a collaction of compact subsets in (X, d).
⋂
α∈ΛKα 6= ∅ ⇔ for any finite subcollection

Λf ⊆ Λ,
⋂
α∈Λf

6= ∅.

3 Sequences And Series

3.1 Sequences

Proposition 3.1. Let xn → x, yn → y. Then

1. {xn ± yn} is convergent and converges to x± y.

2. {xnyn} is convergent and goes to xy.

3. If y 6= 0, then for large n,
{
xn
yn

}
converges to x

y .

1. Take + as our example. Then |(xn + yn)− (x+ y)| = |(xn− x) + (yn− y)|. The argument we make is that because
xn → x, yn → y, for any ε > 0, we can find N ∈ Z+ such that |xn − x| < ε

2 , and same for yn − y.

2. The idea is we take |xnyn − xy| = |xnyn − xny + xny − xy| = |xn(yn − y) + (xn − x)y| = |xn||yn − y|+ |xn − x||y|,
which gives the idea of the proof. Need to use the idea that xn is bounded.

The third proof is just more algebraic tricks.

Example 3.1.1. Prove that for p > 0, 1
np → 0.

Proof. If p ∈ Z+, then 0 ≤ 1
np ≤

1
n , which goes to 0 by the squeeze theorem.

If p ∈ Q+, then it’s a fraction of 2 positive integers `
k where `, k ∈ Z+. Then 1

np = 1
n`/k

= 1
k√
n`

. From the integer case,

1/n` → 0, so the whole thing converges.
If p ∈ R+, we can define np = sup{nq|q ∈ Q, q ≤ p}. By this, we have np ≥ nq for any rational q ≤ q. Divide through,
and apply the squeeze theorem, so we’re done.

Recall, we had a few ways to determine whether sequence limits exist,

• Cauchy⇒ Limit

• xn ≤ xn+1 with an upper bound gives limit exists.

If we want to be more general tho, we can construct the set L = {a ∈ R ∪ {±∞}|xnk → a}, the set of subsequence
limits of {xn}. E.g., if {xn = −1n}, then L = {1,−1}.

Definition 3.1. For the set L as defined above,

• lim supn→∞ xn = supL.

• lim infn→∞ xn = inf L.

Note that if lim inf xn = lim supxn = a, then limxn exists and is equal to a.

Lemma 3.0.1. L is closed.
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Proof. To show L is closed, it’s enough to show that any sequence {ak} from L that ak → a implies a ∈ L. Consider
the following.

a1 ⇒ ∃xn1
so that |xn1

− a1| < 1

a2 ⇒ ∃xn2
so that |xn2

− a2| <
1

2
...

ak ⇒ ∃xnk so that |xn2
− ak| <

1

k

We now construct a subsequence {xnk} of {xn}. Let’s show that xnk → a. We take |xnk − a| ≤ |xnk − ak|+ |ak − a| =
1
k + |ak − a|. The right hand side converges to 0 as k →∞, so xnk → a.

CAUTION, we cannot state that ∃N.n > N gives xn ≤ supL. But it’s ok for any x > supL. Consider {xn + 1
n}, we

have lim supxn = limxn = 1, but every element is larger than 1.

3.2 Series

We may want to think about series as a special case of sequences. Probably not

Definition 3.2. A series
∑∞
n=1 is convergent if the sequence of partial sums {Sn}∞n=1 is convergent. Similarly for

divergence.

Theorem 3.1 (Cauchy’s Criterion).
∑
xn is convergent if and only if for any ε > 0, ∃N such that ∀n > N , and any

p ≥ 0,
∣∣∣∑n+p

k=n xk

∣∣∣ < ε.

Proof. Consider the sequence {Sn} of partial sums. Then, we take |Sn+1−Sn−1| =
∣∣∣∑n+p

k=n xk

∣∣∣ < ε. This is equivalent

to stating {Sn} is cauchy in R, which is equivalent to stating Sn is convergent (and thus the sum is convergent). In
particular, take p = 0. Then

∑n+p
k=n xk = xn. This leads us to a corollary. that if

∑
xn convergent, then xn → 0.

Proposition 3.2. Let
∑∞
n=0 xn, with xn ≥ 0. This is convergent if and only if its partial sums is a bounded sequence.

Proof. ⇐. xn ≥ 0 ⇒ Sn always increasing, which gives Sn ≤ Sn+1. If {Sn} bounded, {Sn} convergent, so the series
is convergent.
⇒.

∑
xn convergent → {Sn} convergent, {Sn} bounded.

Definition 3.3. For any series
∑∞
n=0 xn, if

∑∞
n=0 |x| is convergent, then

∑∞
n=0 xn absolutely convergent.

Proposition 3.3. Absolute convergence implies convergence for any series.

Proof. ∣∣∣∣∣
N+p∑
n=N

xn

∣∣∣∣∣ ≤
N+p∑
n=N

|xn| < ε

True by cauchy’s criterion.

Proposition 3.4 (Comparison Test). Consider
∑
xn,
∑
yn.

1. If we have |xn| ≤ yn, and
∑
yn is convergent, then

∑
xn is absolutely convergent.

2. if xn ≤ yn and
∑
xn diverges to +∞, then

∑
yn also diverges.

Proof. 1.
N+p∑
n=N

|xn| ≤
N+p∑
n=N

=

∣∣∣∣∣
N+p∑
n=N

yn

∣∣∣∣∣ < ε

When
∑
yn convergent.

2. We can just take the partial sums, and show relative divergence to +∞.

10



Example 3.2.1. Consider
∑∞
n=0

1
n2+2 . We know that

∑
1
n2 is convergent, so by comparison, the first series is also

convergent.
We could also consider

∑
n
2n by comparing n� 1.5n for large n.

Proposition 3.5.
∑∞
n=1

1
np convergent if p > 1, divergent if p ≤ 1.

Proof. If p ≤ 0, 1
np not convergent, so neither is its sum.

We can try comparing this to
∑∞
k=0 2kx2k , which might look as

1 2 3 4 5 6 7 8 9 10

This will take
∞∑
n=1

1

np
⇒
∑

2k
1

(2k)p
=
∑ 1

2k(p−1)
=
∑(

1

2p−1

)k
Also, we can compare this (though not as rigorous) to the integral of our series. Except we don’t have a meaning for
integration yet, so maybe hold off and we’ll continue to use the series.

Theorem 3.2 (Root Test). Consider
∑
xn. We take n

√
|xn| = α. We have the following.

1. α < 1, then
∑
xn absolutely converges.

2. α > 1, then
∑
xn diverges.

3. α = 1, then the test fails.

Proof. 1. If α = lim supn→∞
n
√
|xn| < 1. We should try to find some known series which converges to β, which

gives α < β < 1. This inequality gives us ∃N such that n > N , we have n
√
|xn| < β, or |xn| < βn, but β < 1, so

it’s absolutely convergent.

2. We can just choose a subsequence such that |xnk| ≥ 1, so it must diverge. No bueno.

3. Fails, which you can show by just taking 1
np as our sequence.

Theorem 3.3 (Ratio Test).
∑
xn. lim supn→∞

∣∣∣xn+1

xn

∣∣∣ = α.

1. α < 1,
∑
xn absolutely converges.

2. α > 1,
∑
xn diverges.

3. α = 1, the test fails.

Proof. 1. If α < 1, find β so that α < β < 1, then ∃N,n > N
∣∣∣xn+1

xn

∣∣∣ < β which gives |xn+1| < β|xn|so |xN+1 <

β|xN |, etc etc etc. Already proved this in the homework I’m pretty sure. Basically, we have |xn+p| < βp|xN |
which implies convergence, since β < 1.

2. By a similar argument, we have divergence. Take some subsequence such that 1 < β < α.

3. Failure. Ta

Theorem 3.4. If
∑
an converges absolutely to A, and

∑
bn converges to B, then

∑n
k=0 akbn−k converges to AB.

11



Proof.

Sm =

m∑
n=0

Cn =

m∑
n=0

n∑
k=0

akbn−k =

m∑
k=0

ak

m−k∑
n=0

bn

Now, we write

Sm −AB =

m∑
k=0

akS
b
m−k −AB

=

m∑
k=0

ak(Sbm−k −B) +B

(
m∑
k=0

ak −A

)
Now, it’s sufficient to show that

m∑
k=0

|ak||Sbm−k −B| → 0

We introduce the notation βn = Sbn −B. Then, we have

m∑
k=0

|ak||βm−k| = |a0||βm|+ |a1||βm−1|+ |a2||βm−2|+ · · ·+ |am||β0|

We know that for any ε > 0, we can find N such that n > N , |βn| < ε. Choose some such N . We can split our partial
sums into the following

=
(
|a0||βm|+ a1||βm−1|+ · · ·+ |am−(N+1)||βN+1|

)
+ (|am−N ||βN |+ · · ·+ |am||β0|)

Every βk where k < N will be smaller than ε, so we can rewrite this as

=
(
|a0||βm|+ a1||βm−1|+ · · ·+ |am−(N+1)||βN+1|

)
+ (|am−N ||βN |+ · · ·+ |am||β0|)

≤ ε ·
m−(N+1)∑

k=0

|ak|+ max{|β0|, |β1|, . . . , |βN}
m∑

k=m−N

|ak|

But
∑
ak is absolutely convergent, so we have that ε on the left multiplied by a constant is still bounded. We also

know that the term on the right must converge to zero, by Cauchy’s Criterion, which means we can essentially replace
it by an appropriate choice of ε. So, now we have that

m∑
k=0

|ak||βm−k| ≤ ε
(∑

|ak|+ max{|β0|, . . . , |βm|}
)

which shows that for m→∞, the sum converges to 0. So we’re done!

Theorem 3.5 (By Abel). If
∑
an = A,

∑
bn = B, and

∑n
k=0 akbn−k = C, then C = AB.

We will prove this later using power series. Stay tuned kiddos!
Also, rearrangement is weird. We’ll make that statement rigorous.

Definition 3.4. A rearrangement of
∑∞
n=1 an is a series

∑∞
n=1 ar(n) with r : Z+ → Z+ where r is bijective.

Some series may have different limits under different arrangements. Consider
∞∑
n=1

(−1)n

n
=

(
0− 1− 1

3

)
+

(
1

2
− 1

3
− 1

5

)
which gives a negative number, as opposed to our usual result 2.

Theorem 3.6 (By Riemann). If
∑
xn converges, but not absolutely, then for any a ≤ b(±∞). There is some

rearrangement with S′n partial sums so that lim infn→∞ S′n = a; lim supn→∞ S′n = b.6

In particular, if a = b, then there’s a convergent rearrangement. There’s a proof of this in rudin. We’re going to skip
the proof. I’m going to try to write it up.

Theorem 3.7. If
∑
xn converges absolutely, then any rearrangement will converge to the same number.

6oh BOY this is trippy
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4 Limits and Continuity

4.1 Limits

Consider (X, dX), (Y, dy) metric spaces, with some (U, dX |U ) ⊆ (X, dX). A function, or a map is some f : U → Y .

Definition 4.1 (Limit at a Limit Point). Consider (X, dX), (Y, dY ) metric spaces, with U ⊆ X. Then, for some
f : U → Y , limx→x0 f(x) = y0 ∈ Y if for any ε > 0, there exists some δ > 0 such that any x ∈ U with 0 < dX(x, x0) < δ,
has dY (f(x), y0) < ε.

U

x

Y

y

Points in the ball map to points in the other ball.

Example 4.1.1. Check that limx→0 x = 0.
For any ε > 0, we want δ > 0 so that whenever 0 < |x− 0| < δ, we have |f(x)− 0| < ε. Take δ = ε, and we’re done.

Proposition 4.1. 1. limx→x0
f(x) = y0 ⇔ any sequence {xn} in U \ {x0} xn → x0, we will have f(xn)→ y0.

U

x

Y

y

You just ε-δ your way through this for the forward direction. For the backwards direction, we assume a contradiction.

Proposition 4.2. limx→x0
f(x) is unique if it exists.

Proof (Method 1). Assume that y1, y2 ∈ Y such that y1 = y2 = limx→x0 f(x) = y1 = y2. Then, we have that
∀ε > 0,∃δ > 0, so that any 0 < dX(x, x0) < δ1, dY (f(x), y1) < ε. We can say something similar about δ′, y2, which
means that dY (y1, y2) ≤ dY (y1, f(x)) + dY (y2, f(x)) = 2ε. So dY (y1, y2) must be zero.

Proof (Method 2). Assume that y1, y2 = limx→x0
f(x) Subtract the two from each other and we’re one by the unique-

ness of sequential limits.

We can also define all the usual stuff about functions. When f : X → R, we have

• (f ± g)(x) = f(x)± g(x).

• (f · g)(x) = f(x) · g(x).

• (f ÷ g)(x) = f(x)÷ g(x) when g(x) 6= 0.

We also have the following, for limx→x0
f(x) = F, limx→x0

g(X) = G,

1. limx→x0
(f ± g)(x) = F ±G.

2. limx→x0
(f · g)(x) = F ·G.

3. limx→x0(f ÷ g)(x) = F ÷G when G 6= 0.
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We can prove these things using sequential limits, by taking xn → x0, xn 6= x0, and taking (f + g)(xn) = f(xn) +
g(xn).The advantage here is that it lets us skip δ − ε style arguments.

Example 4.1.2 (Polynomial Gang). All f : R→ R.

1. limx→x0
f(x) = limx→x0

x = x0.

2. f(x) = 3x2 + 2x− 3. We need only evaluate limx→x0
3x2 = 3 limx→x0

x2 = 3 limx→x0
x2 limx→x0

x2 = 3x2
0.7

3. Consider f(x)
g(x) some rational function where f, g are two polynomials. Let U ⊆ R where U = R \ {x|g(x) = 0}.

Then, limx→x0

f(x)
g(x) = f(x0)

g(x0) when x0 ∈ U.

4.2 Continuity in Metric Spaces

Consider (X, dx), (Y, dy) metric spaces.

Definition 4.2 (Continuity). Then

1. If x0 is an isolated point in X, we define f(x) continuous at x0.

2. If x0 is not isolated, then we say f(x) is continuous at x0 if any sequence xn → x0, there is f(xn → f(x0) as
n→∞

Proposition 4.3. f : X → Y , x0 ∈ X. f is continuous at x0 ⇔ for any ε > 0,∃δ > 0 such that any dx(x, x0) < δ
there is dy(f(x), f(x0)) < ε.

Proof. ⇒. If x0 isolated, for any ε > 0, we can find δ > 0, only x0 satisfies it, we’re good, since x = x0 ⇒ f(x) =
f(x0).8

f

X

x0

Y

y0

Proposition 4.4. If f, g are continuous at x0 ∈ X, we have

1. f ± g, f · g are continuous at x0.

2. when g(x0) 6= 0, f ÷ g is continuous at x0.

The proof for this follows the proof for limits and is pretty easy.

Example 4.2.1. We have some examples from what we’ve shown.

1. Polynomials, rational functions, ex, cos(x), sin(x) are continuous at anhy point in the natural domain.

2. +,−, ·,÷ of these functions are continuous everywhere in their natural domains.

Proposition 4.5. Consider (X, dx), (Y, dy), (Z, dZ). Consider f : X → Y, g : Y → Z. Let f(x0) ∈ Y continuous,
g(f(x0)) is continuous. This function is called g ◦ f : X → Z, and it is continuous at x0.

f

X

x0

Y

y0

Z

g z0

7The general statment is that limx→x0 f(x) = f(x0), where f is a polynomial is equivalent to saying that any polynomial is continuous
on R.

8there’s more I missed here, check her notes
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We can also take more general f , for instance, dR2 : R2 → R is also continuous.
Or, consider g1(x) = 2x,g 2(x) = 3x from R→ R. Then, define g : R→ R2 so that x 7→ (g1(x), g2(x)).
Now, take f ◦ g : R→ R, we have f ◦ g(x) = f(g(x)) = f(2x, 3x) = 2x+ 3x = 5x.

Definition 4.3. f : X → Y is called a continuous function (or a continuous map) if f is continuous at any x ∈ X.

Theorem 4.1. f : X → Y

1. f is continuous if and only if the preimage of any open subset of Y is open in X.

2. f is continuous if and only if the preimage of any closed subset of Y is closed in X.

We will only prove the first case. The second case is exactly the same.

Proof (1). ⇒. Take any open set V ⊆ Y , with f−1(V ) = {x ∈ X|f(x) ∈ V }. We will show that f−1(V ) is open, i.e.
any x ∈ f−1(V ) is an interior point.
Take some f(x) ∈ V which is an interior point in V . Then, there exists some ε > 0 so that Bε(f(x)) ⊆ V . Then, by
the continuity of f at x, we can find δ > 0 so that f(Bδ(x)) ⊆ Bε(f(x)). This implies that Bδ(x) ⊆ f−1(V ), which
shows x is an interior point of the preimage.
⇐. This is trivial. We’ve already shown any preimage of an open set is open. Then, we just do something very very
similar. Take any point x ∈ X, and map it to f(x), where f(x) ∈ Y . Consider Bε(f(x)), then the preimage in X is
open by our assumption of continuity. In particular, x ∈ f−1(Bε(f(x))) i san interior point.

Definition 4.4. x0 ∈ X is discontinuous point of f if f is not continuous at x0.

If we restrict ourselves to R and intervals thereof, we have that there are different limits from the left or the right.
These are defined by

lim
x→x−0

f(x) : ∀ε > 0,∃δ > 0 such that 0 < x0 − x < δ

lim
x→x+

0

f(x) : ∀ε > 0,∃δ > 0 such that 0 < x− x0 < δ

Definition 4.5. Assume x0 is a discontinuous point for f on some interval in R.

1. Call x0 the first kind of discontinuous point if both limx→x±0
f(x) exist, and limx→x−0

f(x) = limx→x+
0

. such x0

is called a removable discontinuous point.

2. Call x0 the second kind of discontinuous point if it is not the first kind.

If x0 is removable, then we can modify f by defining f(x0) = limx→x0
f(x), and then f is continuous.

An interesting weird case to consider is

f(x) =

{
x x ∈ Q
0 x /∈ Q

4.3 Continuity and Compactness

Let X f
→Y continuous.

Theorem 4.2. Assume f continuous. Then for any compact subset K ⊆ X, the image of K, f(K) = {f(x)|x ∈ K}
is compact in Y .

Proof (Compactness). Take any open cover {Vα|α ∈ Λ} of f(K). Let’s denote f−1(Vα) = Uα ⊆ X is open because
f is continuous, and {Uα|α ∈ Λ} is a cover of K. The compactness of K implies there exists a finite subcover from
{Uα|α ∈ Λ}. By this then, {Vα|α ∈ Λ′} where Λ′ is finite is a finite subcover. This follows pretty directly from theorem
4.1.

Proof (Sequential Compactness). Assume K is sequentially compact. Take any sequence {xn}. Seqeuential compact-
ness implies ∃{xnk} su that xnk → x0 ∈ K. Continuity of f implies that f(xnk)→ f(x0) ∈ f(K). By this way we get
such a subsequence f(xnk) of f(xn) which is sequentially compact in f(K).

Definition 4.6. A function f is called proper if the preimage of any compact set is compact
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Not every continuous map is proper. For example, f(x) = 0, x ∈ R. f−1(0) = R is not compact. A less trivial example
is f(x) = 1

x , x ∈ (0,+∞). We have [0, 1] ⊆ R is compact, but f([0, 1]) = [1,+∞) is not compact. Spiced!

Corollary 4.2.1. Any real valued function defined on a compact subset of X can obtain it’s supremum and infimum
(e.g. has a maximum and a minimum).

A logical question we might want to know is whether f−1 is continuous for any continuous map. If we want to say the
answer is no, it has to be injective but not open. Consider this function

The function

f(x) =

{
1− x 0 ≤ x < 1
2− x 2 ≤ x ≤ 3

where f : [0, 1)∪ [2, 3]→ R injects.
(
− 1

2 ,
1
2

)
⊆ R is open. Then, we have f−1

((
− 1

2 ,
1
2

))
=
(

1
2 , 1
)
∪
[
2, 5

2

)
which is open

in the domain.
Now, if we consider the inverse function,

f−1(x)

{
2− x −1 ≤ x ≤ 0
1− x 0 < x ≤ 1

we have

which is discontinuous at x = 0.

Definition 4.7. If we assume X,Y two metric spaces, with f : X → Y bijective, f−1 : Y → X defined, and both
f−1, f are continuous, thhen these two spaces are then called homeomorphic to each other.

Note, if X,Y are both homeomorphic, then they have the same topology.

Theorem 4.3. Assume f : X → Y bijective and continuous. Then, if X is compact, the inverse map f−1 : Y → X
is also continuous. (I.e. X,Y are homeomorphic).

Proof (Compactness). We can take f−1 continuous⇔ f is open. Take any U ⊆ X open. Then, it’s sufficient to show
that f(U) ⊆ Y is also open. We will show that Y \ f(U) is closed. We have f(X \ U) = Y \ f(U), by the bijectivity
of f . By the continuity of f , we have that f(X \U) is compact, and thus closed in Y , which completes the proof.

Proof (Sequential Compactness). Want to show that f−1 is continuous. Take any sequence {f(xn)|xn ∈ X} in Y , with
f(xn)→ y0 ∈ Y . Since our map surjects, we have f(x0) = y0. A really reasonable idea should be that f−1(f(xn)) = xn,
and f−1(f(x0)) = x0. Now, we want to demonstrate that xn → x0. Since X is sequentially compact, we have {xnk}
converges to x′ in X. By the continuity of f , we have f(xnk) → f(x′). But since f(x0) has only one limit, we have
x′ = x0, so every subsequential lmiit of xn is the same, and thus xn → x0.

Furthermore, if xn 6→ x0, then ∃ε > 0 so that ∀N,n > N d(xn, x0) ≥ ε0. Then, we have a spooky subseqeuence xnk
with the bad limiting property, since it’s not cauchy or something. Spicy but the lecture is over.
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4.3.1 Uniform Continuity

Typically, we have with our ε-δ definition, δ has x0, ε dependence. Sometimes this isn’t the case though, which is nice.

Definition 4.8. f : X → Y is called uniformly continuous if for any ε > 0, ∃ some δ > 0 so that any two points
x1, x2 ∈ X with dx(x1, x2) < δ, then dy(f(x1), f(x2)) < ε (i.e. has no x0 dependence).

It’s also going to be a homework problem to show that dX : X ×X → R is continuous.

4.4 Continuity and Connectedness

Definition 4.9. Let X be a metric space. X is called connected if any subset S ⊆ X which is both open and closed
is either S = ∅, S = X.9

Example 4.4.1. Consider the ball Br(x0) ⊆ Rn. This is connected.

Example 4.4.2. Consider 2 disjoint balls Br(x0), Bs(x1) with Br(x0) ∩Bs(x1) = ∅, their union is not connected.

Proposition 4.6. X is connected if and only if X = U ∪ V with U ∩ V = ∅, both U, V are open implies that one of
U, V is empty.

Proof. It follows directly from the definition, more or less. Consider the subset U . Then U = X \ V . Since U is open,
V is closed. Since we assumed X is connected, one of these has to be empty.

Theorem 4.4. Consider the continuous map f : X → Y , where X is connected, then f(X) ⊆ Y is also connected (as
a metric space with the induced metric from Y ).

Proof. We’re just going to decompose f(X) = U ∪V with both U, V open, and U = Ũ ∩ f(X) the intersection of open
set Ũ with f(X), and likewise for V . Then, we take f−1(Ũ) = f−1(U) is an open set in X, and likewise for V by the
continuity of X. Then, if we take the union of the two, we have the entire space X. Since X is connected, we have
f−1(Ũ) ∩ f−1(Ṽ ) = ∅. This basically just yeets us the result. One of the preimages is empty, so one of the images is
also empty, whcih is the desired result.

Example 4.4.3 (Topologists sin function). consider S = {(x, sin( 1
x )|x 6= 0} ∪ {0} × [−1, 1] ⊆ R2. We can prove that

this is indeed connected on this interval (but not path connected).

Definition 4.10. A metric space X is called path-connected if for any two points, x0, x ∈ X, there is a continuous
map f [0, 1]→ X so that f(0) = x0, f(1) = x1.

Theorem 4.5. [0, 1] ∈ R is both connected and path connected.

Proof. 1. Path Connected. Consider f(t) = (1− t)x0 + tx1. We are done.

2. Connected. Consider [0, 1] = A∪B, and assume A,B are both open and disjoint. Take a ∈ A, b ∈ B, with a < b.
Then, consider x0 = sup([a, b] ∩A). We know since A is open, x0 /∈ A. Similarly, it doesn’t live in B. So, either
A or B is open. So [0, 1] is connected.

Theorem 4.6. For any metric space X, if X is path connected, X is connected.

Proof. Consider X = U ∪ V , with U, V open and disjoint. If neither is empty, take x0 ∈ U, x1 ∈ V . The assumption
that X is path connected allows us to find a continuous map f : [0, 1] → X so that f(0) = x0, f(1) = x1. Consider
f−1(U), f−1(V ) are both open in [0, 1], and their union is [0, 1]. One of these preimages is empty. Thus, one of U, V
must be empty. If we consider f−1(U) = ∅, then we have f([0, 1]) ∈ V , which is a contradiction to the assumption
f(0) = x0 ∈ U .

Theorem 4.7. In R, a subset is connected iff it is also path connected.

Theorem 4.8 (Intermediate Value Theorem). Consider [a, b] ⊆ R, with f : [a, b] → R a continuous map. If f(a) <
f(b), then for each f(a) < y0 < f(b), there is some x0 ∈ (a, b) such that f(x0) = y0. It’s the freakin vertical line test

Proof. Consider [a, b] connected. So, f([a, b]) is a conneceted subset of R, and f(a), f(b) ∈ f([a, b]). So, we just do
precisely the same thing we did earlier.

We also started monotonicity.

9would a better phrasing of this be that there are no clopen, nonempty proper subsets of X? Yes. She literally just did it on the board.
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5 Differentiation

There’s a conception of smoothness. Picture here.

Definition 5.1. f : [a, b] → R.x0 ∈ [a, b]. Such f is differentiable at x0 if the limit of the function φx0
(x) =

f(x)−f(x0)
x−x0

, x ∈ [a, b], x 6= x0 exists. We denote this limit as f ′(x0), or df
dx (x0).

Example 5.0.1. Consider f(x) = x2, then φx0(x) =
x2−x2

0

x−x0
= (x+x0)(x−x0)

x−x0
= x + x0, so in the limit x → x0, we get

2x0.

Example 5.0.2. Consider f(x) = |x|. We want to check our x = 0 is not differentiable. So φ0(x) = f(x)−f0
x−0 = |x|

x
These just dont approach the same thing from the left and the right, which is very spiced.

Proposition 5.1. f : [a, b]→ R, x0 ∈ [a, b]. If f is differentiable at x0, then f must be continuous at this point.

Proof. We can jusst take

lim
x→x0

|f(x)− f(x0)| = lim
x→x0

(∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ |x− x0|
)

= f ′(x0) lim
x→x0

|x− x0| = 0

so limx→x0 f(x) = f(x0), so f is continuous at x0.

Now, we introduce some notation. If a function f : X → R is continuous on X, we write f ∈ C0(X). If f : X → R
is differentiable at x0 ∈ X, then f ′(x) is a function defined on X. If the derivative is a continuous function, we call
f ′ ∈ C1(X).

Theorem 5.1. f, g : [a, b] → R both differentiable at x0 ∈ [a, b], then f ± g, f · g, f/g are all differentiable at x0.10

Also

1. (f ± g)′(x0) = f ′(x0)± g′(x0).

2. (f · g)′(x0) = f ′(x0)g(x0) + f(x0)g′(x0).

3.
(
f
g

)′
(x0) = f ′(x0)g(x0)−f(x0)g′(x0)

g2(x0) .

As an example, we will prove 2.

Proof. We have

f(x)g(x)− f(x0)g(x0)

x− x0
=

(f(x)g(x)− f(x0)g(x)) + (f(x0)g(x)− f(x0)g(x0))

x− x0

=
f(x)− f(x0)

x− x0
g(x) +

g(x)− g(x0)

x− x0
f(x0)

We know that g is continuous at x0, so we take x→ x0, and we’re left with

= f ′(x0)g(x0) + g′(x0)f(x0)

If the target space is not commutative, we can still just be more careful about our multiplication order to write

= f ′(x0)g(x0) + f(x0)g′(x0)

For 3, we need to consider the neighborhood Bε(x0) upon which no g(x) = 0 for x ∈ Bε(x0). Rui did it in lecture but

I really don’t feel like I need to. You can derive it from 2 after finding d
dx

(
1
g

)
.

We get a lot of mileage out of these definitions.

Example 5.0.3. Consider f(x) =
∑
n anx

n where we assume that the relevant an 6= 0. Then, f ′(x) = (anx
n)
′
+(

an−1x
n−1
)

+ . . . . Now, for each (akx
k)′(2)

= ak(xk)′. We can use induction here. k = 0, 1 is very easy. We can actually
use the product rule here, which makes it easier to do induction. e.g. k = 2 ⇒ (x2)′ = (x · x)′ = x′ · x + x · x′ = 2x.
For k = 3 ⇒ (x3) = (x2)′x + x2x′ = 3x2. We can yeet this into an inductive proof. We have (xk)′ = (xk−1x)′ =
(xk−1)′x+ xk−1x′ = (k − 1)xk−2x+ xk−1 = kxk−1, so we’re done.

10making the assumption g(x0) 6= 0 for the case of division.
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We can generalize these polynomials to rational functions though, with f, g polynomials.

Theorem 5.2 (Chain Rule). Consider f : [a, b] → R differentiable at x0 ∈ [a, b]. Considedr g : [c, b] → R with
f(x0) ∈ [c, d], and g differentiable at f(x0). Then, g ◦ f : [a, b] → R is also differentiable at x0. Moreover, (g ◦ f)′ =
g′(f(x0))f ′(x0).

Proof. First, we introduce some notation. If a function p(x) has limx→x0
p(x) = 0, then p(x) = o(|x− x0|).

We simply take

g ◦ f(x)− g ◦ f(x0)

x− x0

First, we note that g ◦ f(x)− g ◦ f(x0) = g(f(x))− g(f(x0)). Then, we know that g(f(x))−g(f(x0))
f(x)−f(x0) exists. So, we can

write, where the little o functions come from not taking a limit, but making an estimate of the difference which we
can limit later.

g ◦ f(x)− g ◦ f(x0) = g(f(x))− g(f(x0))

= (g′(f(x0)) + o(|f(x)− f(x0)|)) (f(x)− f(x0))

= (g′(f(x0)) + o(|f(x)− f(x0)|))(f ′(x0) + o(|x− x0|))(x− x0)

In order to calculate the derivative then, we just want

lim
x→x0

((g′(f(x0)) + o(|f(x)− f(x0)|))(f ′(x0) + o(|x− x0|)))

Since f(x) is continuous at x0, we have o(|f(x)− f(x0)|) = 0 in the limit, so we have

lim
x→x0

(g′(f(x0))f ′(x0))

So we’re done.

So, we can use the chain rule to do stuff, which is pretty exciting.

Example 5.0.4. If we have

f(x) =

{
x2 x < 0
0 x ≥ 0

Then the derivative actually exists, because it’s differentiable. The derivative is also continuous, but there’s a sharp
point at 0. So it’s not twice differentiable.

Example 5.0.5. This function is apparently differentiable everywhere:

f(x) =

{
x2 sin( 1

x ) x 6= 0
0 x = 0

f(x) = x2 sin( 1
x ) in a neighborhood of x. So, we have to explicitly calculate the derivative at x = 0 by

f ′(0) = lim
x→0

f(x)− f(0)

x
=
x2 sin( 1

x )

x
= x sin(

1

x
) = 0

So, we have

f ′(x)

{
2x sin( 1

x )− cos( 1
x ) x 6= 0

0 x = 0

This function is discontinuous at x = 0, with a second kind discontinuity. The derivative exists, but is discontinuous.

Example 5.0.6. We have checked that

f(x) =

{
x sin( 1

x ) x 6= 0
0 x = 0

is continuous on R. It is not differentiable at 0, which is easily checked by taking the limit definition at x = 0, and
noting that sin( 1

x ) diverges.
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5.1 Mean Value Theorem

Definition 5.2. f : X → R, where X is some metric space, with x0 ∈ X. f has a local maximum at x0 if ∃Bδ(x0)
such that ∀x ∈ Bδ(x0), f(x0) ≥ f(x). Similarly for local minimum, with the opposite inequality.

Definition 5.3. f : [a, b]→ R. A point x0 ∈ [a, b] is called a critical point if f is not differentiable at this point, or
f ′(x0) = 0.

Theorem 5.3. Assume f is defined on [a, b]. If f has a local maximum or minimum, at some point x0 ∈ (a, b), then
x0 must be a critical point.

Proof. If f is not differentiable at x0, then by definition x0 is a critical point. Assume f is differentiable then. WLOG,
we assume x0 is a local maximum. It’s just definition bashing, I got distracted by a really cool quantum problemset.

Theorem 5.4 (Rolle’s Theorem). f(x) is continuous over [a, b] and differentiable over (a, b), with f(a) = f(b), then
we can conclude there must be some point x0 ∈ (a, b) such that f ′(x0) = 0.

To prove the intermediate value theorem, I wonder if it’s ok to just linearly transform your straight line between A,B
to get the new function which we can apply Rolle’s theorem to. Rui wants us to take

g(x) = f(x)− f(b)− f(a)

b− a
x

I think this is equivalent to what I was saying.

Theorem 5.5 (Cauchy’s Mean Value Theorem). For (f(x), g(x)) continuous on [a, b] and differentiable on [a, b], there
exists some x0 ∈ (a, b) so that (f(b)− f(a))g′(x0) = (g(b)− g(a))f ′(x0).

a

b

Some point on this curve is going to have the slope between these two lines. We can also imply this by Rolle’s theorem,
by defining

h(x) = (f(b)− f(a))g(x)− (g(b)− b(a))f(x

Theorem 5.6. If f is differentiable on (a, b), then

1. f ′(x) ≥ 0⇒ f increasing

2. f ′(x) ≤ 0⇒ f decreasing

3. f ′(x) = 0⇒ f constant

Theorem 5.7. Consider f differentiable over [a, b], with f ′(a) < f ′(b). Then, for any f ′(a) < µ < f ′(b), there must
exist some x0 ∈ (a, b) such that f ′(x0) = µ.

Proof. Consider the function g(x) = f(x) − µx. This is differentiable over [a, b]. g′(x) = f ′(x) − µ. Then g′(a) =
f ′(a)− µ < 0 and g′(b) = f ′(b)− µ > 0, so there’s some point at which g′(x) = 0, by the continuity of g′. It also lives
in hte interior of the interval, by the argument presented in lecture.

Corollary 5.7.1. If f ′ is not continuous at some x0 ∈ (a, b), the discontinuity must be of the second kind.

ξ
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