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1 Math Review

1.1 Orthogonal Transformation

Changes basis of vectors to orthogonal basis. You know how to do
this from linear algebra my guy.

In an orthogonal basis, recall that for every basis vector, λλ† = 1
Imagine some vector ~z = ~z′ in some other coordinate system.

Our change of coordinate matrix should bex′y′
z′

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 0

xy
z

 = λ

xy
z


For a rotation about the z-axis.

Orthogonal transformation given by λλ† = 1, where λ is the
transformation matrix. what if we take S → S′ → S′′. Then x′ =
λx, and x′′ = λx′ = w(λx), where w is the change of coordinate
matrix from S′ → S′′.

Orthogonal operators form a group, i.e. multiplication of one
orthogonal operator by another will produce another orthogonal
operator, λ,w ∈ G→ λ · w ∈ G.

Do they commute? No. AB 6= BA in all cases.
Also know that det

(
λλ†
)

= 1 = det(λ) det
(
λ†
)

= |det(λ)|2 →
detλ = ±1

1.2 Scalar, Vector Fields

Scalar Fields don’t depend on coordinate system (invariant with
respect to transformation), i.e. a number associated with every
point in space.

Vector fields do depend on coordinate system. When you have
v′i = λjvj , it satisifes coordinate transformations. (i.e. ∃ transfor-
mation matrix λ)

1.3 More orthogonal transformations

1.3.1 Group!

Orthogonal transformation Λ from coordinate system S → S′,
form a group, so that ∀Λ,W ,

ΛW 6= WΛ
ΛΛ† = In

ΛijWjk 6= WijΛjk

the reason that we care it’s a group is because it’s closed under
multiplication, i.e. for any orthogonal transformation Λ,W , their
product WΛ is also an orthogonal transformation.

1.3.2 det Λ = 1⇔ Λ has eigenvalues=1

(Λ− I)Λ† = 1− Λ† = (1− Λ)†

Now, solve ||Λij − aδij|| = 0

||Λ− 1|| · ||Λ†|| = ||(1− Λ)†|| = ||1− Λ||
∴

||Λ− 1|| = ||1− Λ|| → ||Λ− 1|| = 0

Where here, 1, I are used interchangeably to represent identity

Consider operator P |Pij =

−1 0 0
0 −1 0
0 0 −1

, it’s the inversion

operator, takes any vector ~r = (x, y, z)→ (−x,−y,−z). Determi-
nant is −1, which allows P to be unitary (i.e. P 2=1)

We can now write any transformation Λ as a combination of
rotation and inversion. Take W = PΛ, where W is a rotation
matrix, since ||W || = ||Λ||||P || = 1, then PW = PPΛ = Λ.

1.3.3 Eigenvectors

Consider the transformation[
−1.5 1

1 −1.5

]

e1

e2
e′1

e′2

~r

~r′

We can consider either transformations of coordinate systems (i.e.
basis vectors e1, e2) or of individual vectors (~r).

1.4 Rigid Body Motion

1.4.1 Vector Product (Cross)

Take vectors a1, a2 in the coordinate system defined with basis vec-
tors e1, e2, e3, so that a1 = (a11, a12, a13) and a2 defined similarly.

| ~a1 × ~a2| = | ~a1| · | ~a2| sin(θ)

Where θ is the angle between the two vectors.

When S = span({e1, e2, e3}), and is orthogonal basis.

e1 × e2 = e3 e2 × e3 = e1 e3 × e1 = e2

Levi-Civita tensor density defined by [ei × ej ] = εijkek, we
can write the cyclic permutations of 1,2 and 3 to get the above
identities regarding S.

We can also find the area of a parallelogram formed by two
vectors a1, a2, it will be the square of the magnitude of the cross
of these two vectors: A = |a1 × a2|2. We can also calculate this
using

(a1 × a2) =

∣∣∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣∣∣∣ = det(a)e3
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1.4.2 Scalar Triple Product?

This man lectures very rapidly with lots of subscripts. Where’s
the professor? I’m pretty sure he’s talking about the scalar triple
product rn.

Want to prove that εαβγ = εijkΛαiΛβjΛγk. Alternatively we can
show that ||detA||εαβγ = εijkAαiAβjAγk.

a3 · (a1 × a2) = V = ||aij || =

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a12 0
a12 a22 0
0 0 0

∣∣∣∣∣∣
∣∣∣∣∣∣

double check that those zeroes are there. His handwrit-
ing was kind of scratchy here. Here’s probably a better example
https://en.wikipedia.org/wiki/Triple_product

Also, a× (b× c) = b(a · c)− c(a · b), to be proven at home.

2 Newtonian Physics

2.1 Angular Velocity

Reintroduce angular velocity. Consider ~r, with Λij = δij + δϕij ,
with δϕ << 1. We still want Λ to be unitary (ΛΛ† = 1), so

(1 + δϕ)(1 + δϕ†) = 11 + δϕ+ δϕ† + δϕδϕ† = 1

We know that δϕ = −δϕ†, since δϕδϕ† is very very small.
Now consider x′ = (1 + δϕ)x. We can take

x′ − x = δϕx

δx =

0 −δϕ3 δϕ2

0 0 −δϕ1

0 0 0


δx = (δϕ× x)

In other words, δr = [δϕ× r].
Then, ∂x

∂t = (∂φ∂t × x ⇒
dr
dt = [Ω × r] where Ω is the Angular

Velocity.

2.2 Linear Velocity

It’s the time derivative of position. In arbitrary coordinates it’s
expressed simply

dr

dt
= lim

∆t→0

r(t+ ∆t)− r(t)
∆t

In cartesian coordinates it simplifies to the sum of the componen-
twise time derivatives.

2.3 Coordinate Transform w/ AV

Relations of coordinate transformation with some from S that has
a very complicated motion compared to frame S′.(

dr

dt

)
S

=

(
dr

dt

)
S′

+ (Ω× r)

3 Calculus of Variations

3.1 Minimzation

Recall from math 1B (or maybe 53), we’re looking for this thing
called geodesics, which takes the integral

∫ x2,y2
x1,y1

dS, and minimizing
path length.

3.1.1 Ex: Bracchistocrone

Two points, A,B, and a particle falling in gravity, md2x
dt2 =

0,md2y
dt2 = Fg. The transit time from point A → B = t =∫ x2,y2

x1,y2
dS
v =

∫ x2,y2
x1,y2

√
dx2+dy2

2yg . Integrating for y here is really re-
ally hard.

There’s an easier way! Let H = y′ dfdy′ − f . We can find that
dH
dx = y′′ df

dy′ + y′ d
dx − y

′ df
dy − y

′′ df
dy′ −

df
dx , which all cancels to find

that dH
dx = −df

dx .
Basically, you integrate, do some fancy trig substitution and find

that the solution is a cycloid. Bale’s words here were explicitly ”I’ll
let you do the dirty work here”, so I guess this is to be proven at
home

3.1.2 Ex: Plateau’s Problem

Minimizing surface areas, w.r.t surface tension. Imagine two fixed
rings, we want to minimize tension, so they’ll pull each other to-
gether. Want to write a functional that corresponds to the energy
of the system.

3.2 Euler-Lagrange Equation

d

dt

df

dx′
− df

dx
= 0

describes the optimal path along some constraint, using a func-
tional so that

dS =

∫
fdx

Recall that if f is not a function of the independent variable, (t
in the expression above), then you can take

H = y′
df

dy′
− f

and discover that
dH

dx
= −df

dx

3.2.1 Plateau’s Problem, cont.

Take some soap film suspended between two hoops

r(x)

D

surface area of a small band given by

dS = 2πr(x)

√
1 +

(
dr

dx

)2

dx

which implies that the total area is equal to

= 2π

∫ D/2

−D/2
r(x)

√
1 + r′(x)2dx

we can use the hamiltonian H to say that

H = r′
df

dr
− f

3
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with
df

dr′
=

rr′√
1 + r′2

⇒ H =
rr′2√
1 + r′2

− r
√

1 + r′2

Then, take dH
dx = −df

dx , so dr
dx = ±

√(
r
H

)2 − 1, os we integrate∫
dr√(
r
h

)2 − 1

we need to use hyperbolic cosines and sines, so we take r
H = coshψ,

which integrating gives∫
H sinhψdr

sinhψ
= Hψ

and thus, taking χ = H
D

1.

r(χ) = H cosh
χ

H

where χ = D
2 , r = R. Final result comes out to be that

R

D
= χ cosh

(
1

2χ

)
This is a number, which has to be equal to the geometry of the
system!

3.3 Quantum ⇒ Lagrangian Mechanics

Recall we have the transition amplitude, i.e. how probable it is to
go from one state to another.

q1(t1)→ q2(t2)

would be expressed as

〈q1(t1)|q2(t2)〉

which goes to

〈q2(t+ ∆t)|q1(t)〉 = 〈q2| e−|∆H| |q1〉

we take action as

S(x(t)) =

∫ t2

t1

dt(
p2

2m
− V )

then, with amplitude functional A[x(t)] = ei
S
~ , we can write an

integral across every possible path, with

|A|2 =

∫
all paths

x(t)ei
S(x(t))

~ dt

The path that wins is the one that oscillates the least, i.e. the
one that has stationary phase, since integrating an oscillator gives
zero. This means we want to find a stationary form of S, which is
called Hamilton’s Principle, which gives that

δS(x(t)) = S

∫
dt

(
p2

2m
− V

)
= 9

1don’t worry, I don’t totally understand how he did this integral either

4 Lagrangian Mechanics

4.1 Defining the Lagrangian

L = T − V

kinetic minus potential energy. Then, the lagrangian can be put
into the Euler-lagrange equation to give that

d

dt

dL

dq′
− dL

dq
= 0

which contains all of classical mechanics, since we can then write

S

∫ t2

t1

dtL(x, x′, t)

with mass m, potential V , we have T = mv2

2 , so the lagrangian is

mv2

2
− V (q)

now, we write lagrange euler equation as

dL

dq′
= mq′

d

dt

dL

dq′
= mq′′

dL

dq
=

dV

dq

which gives an equation of motion

mq′′ = −dV

dq
⇔ F = ma

4.2 Ex: spherical pendulum

~r = l cosϕ sin θx̂+ l sinϕ sin θŷ + l cos θẑ

~̇r = (−lϕ̇ sinϕ sin θ + l cosϕθ̇ cos θ)x̂

+(lϕ̇ cosϕ sin θ + l sinϕθ̇ cos θ)ŷ

−lθ̇ sin θẑ

~̇r~̇r = l2ϕ̇2 sin2 θ + l2θ̇2

Then, we have

T =
1

2
ṁ~r2 =

1

2

(
ml2θ̇2 +ml2ϕ̇2 sin2 θ

)
Which gives a lagrangian

L = T − V =
1

2
ṁ~r2 =

1

2

(
ml2θ̇2 +ml2ϕ̇2 sin2 θ

)
−mgl cos θ

Now, we want to apply the ELE, which gives two constraints

d

dt

dL

dθ̇
− dL

dθ
= 0

d

dt

dL

dϕ̇
− dL

dϕ
= 0

There’s no ϕ dependence, so

d

dt

(
dL

dϕ̇

)
= 0

which makes it a constant of motion, so we say(
dL

dϕ̇

)
= pϕ = ml2ϕ̇ sin2 θ
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We also have

dL

dθ
= mgl sin θ +ml2ϕ̇2 sin θ cos θ

dL

dθ̇
= ml2θ̇ → d

dt
{dvLθ̇ = ml2θ̈

Then, we can find an equaiton of motion for θ, which gives

θ̈ =
g

l
sin θ + ϕ2 sin θ cos θ

with another term for ϕ̇,

ϕ̇2 =
p2
ϕ

m2l2 sin4 θ

θ̈ =
g

l
sin θ +

p2
ϕ

m2l2
cos θ

sin2 θ

Integrating this is just rude. So let’s analyze some cases.

4.2.1 case ϕ̇ = 0

implies pϕ = 0, which is then

θ̈ =
g

l
sin θ

which is just a regular harmonic oscillator

4.2.2 case θ̇ =constant

Implies that θ̈ = 0, which gives then that

g

l
sin θ + ϕ̇2 sin θ0 cos θ0 = 0(g
l

+ ϕ̇2 cos θ0

)
sin θ0 = 0

if θ0 = 0, π etc, then the pendulum is just balanced at the top, not
moving.

if cos θ0 < 0, we have θ0 > π/2, which gives that ϕ̇2 > g
l = ω0

We could also integrate this and get complex motion, but these
are the stable forms.

4.3 Driven Pendulum

Point on axis is being pushed, what is the motion of the point at
the bottom of the pendulum?

x = a cosωt

r = xx̂+ l(sin θx̂− cos θŷ)

~̇r = (ẋ+ lθ̇ cos θ)x̂+ lθ̇ sin θŷ

ṙ2 = ẋ2 + l2θ̇2 + 2ẋθ̇l cos θ

we set up the lagrangian

L = T − V =
1

2
m(ẋ2 + l2θ̇2 + 2ẋ2θ̇2l cos θ) +mgl cos θ

and try to find simple solutions.

4.4 Examples of Lagrangian Mechanics

4.4.1 Cone?

Missed the first one, but we know that angular momentum is con-
served. Basically, just a whole lot of algebran happening here, with
something rotating in a conic shape, or on the surface of a cone
(maybe like throwing a coin into one of those things at McDon-
alds).

Stable solutions can be given by r̈ = 0. I.e. the coin doesn’t
ever go into the money receptacle.

Gives that θ̇2 tanα = g
r0
⇒ θ̇2 = ω0

tanα Which implies that in
order to have some stable orbit in a cone at a certain angle α, you
have explicit angular momentum dependence.

4.4.2 Mass/Spring on a T

Imagine some T on a tabletop, that looks a bit like this

Where the dot is connected to the T by a spring that’s hooked up
at the juncture.

Let ωt be the angle between the x-axis and the T .

then we can write ~r = (l cosωt−ρ sinωt)x̂+(l sinωt+ρ cosωt)ŷ

T =
1

2
m(ṙṙ) =

1

2
m(ω2(l2 + ρ2) + ρ̇2 + 2ωlρ̇)

put in to the euler lagrange equation

∂L

∂ρ
= mω2ρ− kρ

∂L

∂ρ̇
= mρ̇+ ωl

So, equating these two things, gives us that

ρ̈+ (
k

m
− ω2)ρ = 0

which yields 3 sort of ‘classes’ of solutions. First is where ω <
√

k
m ,

which yields a simple harmonic oscillator, very fun!

We also could have ω >
√

k
m , which gives us that ρ(t) = Beαt +

Ce−αt.

There’s also the case of equality, which gives us resonant oscil-
lation, or just a growth term ρ(t) ∼ t.

4.4.3 Now with Gravity!

Take the previous problem, and just add gravity into the mix, since
we all like to have fun.

Now we have V = mgy, and we have y from the previous prob-
lem, so the lagrangian becomes some really long wild thing, that I
cannot see (Bale didn’t do the whole thing out, but the principle
of the problem is similar to what we did above).
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5 Symmetries (Formally)

Considering changes to L (the lagrangian) when we perturb one of
the coordinates. Say it’s qi → q̃i = qi + ki

5.1 Linear Momentum

consider

x̃ = x+ ε ˙̃x = ẋ

T =
1

2
mẋ2 =

1

2
m ˙̃2x

L =
1

2
mẋ2 − V (x) L̃ =

1

2
m ˙̃2x− Ṽ (x)

If we apply the constraint that L(x, ẋ) = L̃(x̃, ˙̃x), then V (x) has
to be invariant to spatial pertubation, which implies that Fx = 0,
since −F = ∂V

∂x .
This is just a meme’d way of writing conservation of linear mo-

mentum, since it boils down to

d

dt
(mẋ) = 0

5.2 Noethers Theorem (intro)

L(q, q̇) = L(q + εk, q̇ + εk̇)

L(q, q̇) = L(q + εk, q̇ + εk̇) = L(q, q̇) + ε
∑
i

k̇i
∂L

∂q̇i
+ ε
∑
i

k
∂L

∂qi
....

This just applies the constraint that the sum of the first n taylor
expanded terms has to be zero, which is Noethers Theorem.

Another, simpler way of writing this is that∑
K
∂L

∂q̇
= C

where C is constant.

Example

θ l

we just apply

L =
1

2
ml̇2 +

1

2
ml2θ̇2 −mgl cos θ

And derive properties from this, like conservation of angular mo-
mentum.

5.3 Probably the Hamiltonian

consider

H = q̇
∂L

∂q̇
− L

dH

dt
= −dL

dt

some long thing using the chain rule. has it simplify down to the
above form, which implies htat H is a conserved quantity with
respect to time.

Take

L =
1

2
mẋ2 − V (x)

H = ẋ
dL

dẋ
− L = mẋ2 − (

1

2
mẋ2 + V (x)) = total energy

which lets us say H is a total energy, the hamiltonian.

6 More Lagrangian Mechanics

6.1 Pertubations w/ a pendulum

Imagine two pendulums as follows

small pertubations will be stable for the top pendulum in gravity,
about θ = 0, but unstable for the lower.

General solution for for θ at 0 is given as

δθ = A1e
−iω0t +A2e

iω0t

if θ = π, we find

δθ̈ = ω2
0δθ

which gives

δθ = A1e
−ω0t +A2e

−ω0t

This comes from finding solutions to differential equations. You
probably should have taken 54 as a prerequisite to this class, but
if u didn’t hmu for textbooks (totally legal i promise2).

6.2 Interesting thing to do at home

ω

ground is oscillating, with ω >> ω0 of the pendulum,

6.3 More general

take some lagrangian

L =
1

2
q̇2 − V (q)

then equilibrium given by

∂V

∂q
= 0→ q = q0

2no promises
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Take some q = q0 + δq, then the lagrangian is given

L =
1

2
(δq̇)2 − V (q0 + δq) =

1

2
δq̇2 − 1

2

(
∂2V

∂q2

)
q=q0

∂q2

∂q̈ = −
(
∂2V

∂q2

)
0

δq

δq = Aeiωt ω2 =
∂2V

∂q2
0

≥ 0

which gives the sort of intuitive solution that there needs to be a
potential well around stable systems, i.e.

where the curve represents potential.

6.4 Two Pendulum system

I’m not going to do a drawing of this one. Length of p1 is l1,
l2, angle to vertical given by θn, where n represents the penulum
number, similarly for the mass. We have

U = −m1gl2 cos θ1 −m2g(l2 cos θ1 + l2 cos θ2)

T =
1

2
m1(ẋ1

2 + ẏ1
2) +

1

2
m2(ẋ2

2 + ẏ2
2)

example for x2, y2: given by

x2 = l1 sin θ1 + l2 sin θ2

y2 = −l1 cos θ1 − l2 cos θ2

We get some really really really long for for the lagrangian, which
it’s almost certainly too long to type. Just do the derivative, and
you get that it’s

L = T − U

The solution is then given for

d

dt

(
dL
θi

)
=
∂L
∂θi

only equilibrium point is given for θi = 0∀i. Even if the pendu-
lums were perpendicular to each other, it would be in unstable
equilibrium.

Now, we want to linearize the system so that there are only
quadratic terms in the lagrangian. No higher powers than 2.

for small θ, we just taylor expand everything, gives us

L =
1

2
(m1 +m2)l22θ̇1

2
+

1

2
m2l

2
2θ̇2

2

+m2l1l2θ̇1θ̇2 +
1

2
(m1 +m2)gl1θ

2
1 +

1

2
m2gl2θ

2
2

We can simplify this down, wiriting

L =
1

2
θ̇1

2
+

1

2
µl2θ̇2

2
+ µlθ̇1θ̇2 −

1

2
ω2

0θ1θ
2
1 −

1

2
µlω2

0θ
2
2

with

µ =
m2

m1 +m2
l =

l2
l1

This yields

θ̈1 + µlθ̈2 = −ω2
2θ1

lθ̈2 + θ̈1 = −ω2
0θ2

Now, we rewrite in matrix form, trying to find θi = Aie
iωt.[

ω2
0 − ω2 −µlω2

−ω2 ω2
0 − ω2l

] [
A1

A2

]
= 0

Let’s call that matrix D, and take it’s determinant, to see if either
A1, A2 must be zero.

||D|| = (1− µ)lω4 − ω2ω2
0(1 + l) + ω4

0

The solutions then, are given as

ω2
± =

ω2
0(1− l)±

√
(1 + l)2 − 4(1− µ)l

2(1− µ)l

Now, we consider A−, A+, then, we can write

θy = C+
y A

+
y e

iω+t + C−y A
−
y e

iω−t

with Ci as the initial condition.

1. Equilibrium

2. Linearize

3. ω → Ai

4. something else

These represent the normal modes of a system.
Lets consider the equation with the matrix D for the case of ω+.

It’s provable that ω2
+ > ω2

0 , so we take

(ω2
0 − ω2

+)A1 = µlω2
+A2

A1 =
µlω2

+

ω2
0 − ω2

+

A2 sign
A1

A2
= −1

6.5 Four points on circle

Take four points on a circle, all of which are connected by springs
of coefficient k. (I might add a drawing of this later, it’s kind of
hard to picture). All points are of the same mass.

L =
1

2
mR2

4∑
i=1

ϕ̇i
2−

1

2
k ×R2

[
(ϕ1 − ϕ2)2 + (ϕ1 − ϕ4)2 + (ϕ2 − ϕ3)2 + (ϕ2 − ϕ4)2

]
Which gives a bunch of coupled oscillatros, for ϕ̈i. It’s more con-
venient to write them as a giant matrix

2ω2
0 − ω2 −ω2

0 0 −ω2
0

−ω2
0 2ω2

0 − ω2 −ω2
0 0

0 −ω2
0 −2ω2

0 − ω2 − ω2
0

−ω2
0 0 −ω2

0 2ω2
0 − ω2



A1

A2

A3

A4

 = 0

We compute the determinant, and find that

||D|| = ±(2ω2
0 − ω2)(4ω2

0 − ω2)ω2 = 0

There are some eigenmodes,

ω = 0 ω = 2ω0 ω =
√

2ω0
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7 Forced, Damped Oscillators

Try some F (t) = C0e
−iωt, then we can think about something with

a harmonic sollution, i.e. Z(t) = Ãe−iωt, with motion described
as Re{z(t)}. We punch this into the general solution (homoge-
neous+inhomogenous), to get an answer.3(

d2

dt2
+ 2β

d

dt
+ ω2

0

)
z(t) = F (t)/m

Then, we solve for Ã = C0

−ω2
0−2iβ+ω2 . Particular term is complex!

Ã =
F0

m

ω2
0 − 2iβω − ω2

=
F0

m

ω2
0 − ω2 − 2βiω

You also get elasitic and absorptive amplitude.

A =
F0/m(ω2

0 − ω2)

(ω2
0 − ω2)2 + 4β2ω2

≡ elastic

B =
2βωF0/m

(ω2
0 − ω2 + 4β2ω2

≡ absorptive

which gives

z(t) = A cosωt+B sinωt+ i(B cosωt−A sinωt)

A

small β
large β

constant power∼ work
time .

P (t) = F (t) · ż(t)

= F0 cosωt · ∂
∂t

= F0 cosωt(−ωA sinωt+ ωB cosωt)

The first term averages to zero in half a cycle, which is why we call
it the elastic amplitude.

The average of B over a half cycle represents the energy dissap-
ated by the system, which is the same as β = 1

2F0ωB.

Re(Z) =
A√

(ω2
0 − ω2) + 4β2ω2

cos(ωt− ϕ)

With ϕ = tan− 1
(

2βω
ω2

0−ω2

)
.

ω/ω0

small β
large β

Define Q ≡quality factor.

Q =
ω

2β
=

√
ω2

0 − β2

2β

z̈ +
ż

Q
+ z = 0

3Bale said ‘read the fourier thing’ which I assume is a reference to the text

Low Q correspond to a lot of damping (i.e. broad resonance), and
a high Q corresponds to little damping.

Check out Oscillations and Waves by A.P. French.

There are also these green functions, which are kind of fun. It’s
like an optics or quantum problem, when you’re crossing a barrier.

z̈ − 2βż + ω2
0z = F0/m Region I

z̈ + 2βż + ω2
0z = 0 Region II

You go about solving this using the typical method of solving dif-
ferential equations, which gives you (in region I)

C2 =
β

m
C1 =

β

ω1

F0

mω2
0

Which gives

z(t) =
F0

mω2
0

[
1− e−βt cosω1t−

β

m
e−βt sinω1t

]
between 0 ≤ t ≤ τ (boundary). Taylor expanding, we can write
this as

z(t) =
F0

mω2
0

[
1− (1− βt+

(βt)2

2
...

]
which simplifies down to

≈ F0

mω2
0

(
ω2

0t
2

2
− βt2

2

)
which tells z ∼ t2 for early times, which is about what we’d expect.

We also have, at the boundary (a homogeneous solution starting
at t = τ).

z0(t) = e−β(t−τ) [D1 cosω1(t− τ) +D2 sinω1(t− τ)]

Think of it like integrating over a bajillion little impulses. No
testing on green functions apparently (it isn’t in the book).

z(t) =

∫ t

t′→−∞
G(t, t′)F (t′)dt′

with F (t′) the forcing function, and G the green function.

Green function of damped SHO with z(0) = ż(0) = 0:

G(t, t′) =
e−β(t−t′) sinω1(t− t′)

mω1

DO AT HOME, try taking F (t′) = αt′ (linearly increasing force),
try doing the integral with the forcing function.

8 Central Force Motion

Recall, newton, we have F = m~a = d~p
dt . So, for some direction ŝ,

if we have F · ŝ = 0, then ~p · ~s = 0, also true for torque. Implies
conservation of true, also true for angular momentum.

Definition 8.1. Central force is a force such that ~F (~r) = f(r)r̂,
i.e. force depends only on vector between objects.

This means that the torque ~r × ~F = ~rr̂f(r) = 0, which implies

that ~L ≡ constant.
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8.1 Two Body Problem

let r1, r2 be vectors pointing to two masses, m1,m2 respectively.
let ~R be the vector pointing to the center of mass, and ~r be the
vector pointing from m1 to m2. Let r′n be the vector pointing from
mn to the cm.

We can think about the lagrangian. noting that

~rn = ~R+ ~rn
′

Now, writing down the component bits of T , we have

T =
1

2
(m1 ~̇r

2
1 +m2 ~̇r

2
2)

which expands (after some substitution) to

T =
1

2

(
m1Ṙ

2 +m1ṙ
′2
1 + 2m1Ṙṙ

′
1 +m2Ṙ

2+,2 ṙ
′2
2 + 2m2Ṙṙ

′
2

)
If we define the center of mass as∑

i

miri =
∑
i

mi
~R

then the cross terms from our dot product cancel, and T simplifies
to

T =
1

2
(m1 +m2)Ṙ2 +

1

2
m1ṙ′

2

1 +
1

2
m2ṙ′

2

2

we also have

~r′2 =
−m1

m1 +m2
~r ~r′1 =

m2

m1 +m2
~r

The lagrangian then becomes, using this simplification for the re-
duced mass

1

2
(m1ṙ′

2

1 +m2ṙ′
2

2) =
1

2

(
m1m2

m1 +m2

)
ṙ2

We can call this reduced mass µ, and the total mass M . Now, we
get

T =
1

2
(MṘ2 + µṙ2)

Now, the lagrangian

L = T − U =
1

2
(MṘ2 + µṙ2)− U(r)

Immediately, we can tell that R is cyclic, (i.e. ∂L
∂R = 0, which

implies that mṘ ≡constant, which can be edrived from the euler-
lagrange equations easily)

Since the momentum of the center of mass is conserved, we’re
just going to drop the MṘ2 term, since we’re just changing to a
frame that’s moving with the center of mass.

The problem is now basically a single-body problem.
Conservative forces that depend on only r, so we have F (r) =

f(r)r̂4 so

~F = −~∇V (r) = f(r)r̂

V (r) = −
∫ ~r

~r0

~F (~r′)d~r′

We can convert this to a 2-d problem in polar coordinates, with
the knowledge that dL

dt = 0, so, we can write L as

L =
1

2
m(ṙ2 + r2θ̇2)− V (r)

4note that I’m dropping a lot of over-arrows, but these objects are still
vectors

We need to choose a form for the potential, take

∂L
∂θ̇

= mr2θ̇
∂L
∂θ

= 0

d

dt
= 0 l = mr2θ̇ ≡ angular momentum

This immediately yields one of keplers laws, since

d

dt
= 0

is the areal velocity, we get keplers second law, since that tells you
the area swept out by a radius vector per unit time is always the
same.

This gives the equation of motion

mr̈ −mrθ̇2 = f(r)

with the knowledge that θ̇ = l
mr2 , we can write now that

mr̈ − l2

mr3
= f(r)

which is a one dimensional equaiton of motion, which we know how
to solve. Total energy is

E =
1

2
(mṙ2 +

l2

mr3
+ V (r) ≡ const

Let’s integrate the equation of motion

θ̇ =
dθ

dt
=

l

mr2∫
dθ =

∫
l

mr(r)2
dt

∆θ = l

∫ t

0

dt

mr2(t)

We also have

ṙ =

√
2

m

(
E − V (r)− l2

2mr2

)
which gives

t =

∫
dt =

∫ r

r0

dr√
2
m

(
E − V (r)− l2

2mr2

)
So, what can we qualitatively get out of this problem? WE STILL
HAVENT SPECIFIED THE POTENTIAL :eyeroll:.

Let’s define an effective potential. Let V ′(r) = V (r) + l2

+2mr2 ,
then we can rewrite energy as

E =
1

2
mṙ2 + V ′(r)

Finally, we should take V = −kr (like gravity, or a coulomb force).
Then,

V ′(r) =
−k
r

+
l2

2mr2

This looks qualitatively like the following

Energy

~r

E1

E2
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Between the certain energy levels, there is different behavior. E1

corresponds ot a hyperbola, since ther’s only one turning point, it
will make one turn, which is a path that looks like

at E2, it will be an ellipse, from r1 to r2 (i.e. the places E2

intersectes energy).
At E4, you should get a parabola (lowest point on the energy

graph).
We can also solve for θ(t), r(t) using L,E are constant. In prin-

ciple, we coould solve and make plots in terms of time etc, but
we also want to see plots of r(θ, θ(r). We can use conservation of
angualr momentum to achieve this goal. dθ

dt = l
mr2 , which gives us

ldt = mr2dθ.
We can write this as

dθ =
ldr

mr2

√
2
m

(
E − V (r)− l2

2mr2

)
with potential written as inverse r, we get

θ = θ0 +

∫ r

r0

dr

r2

√
2mE
l2 −

2mV
l2 −

l
r2

making a u-sub, for r = 1
u , we get

θ = θ0

∫ u

u0

du√
2mE
l2 −

2mV
l2 − u2

To be continued thursday.

8.2 Central Force Motion, Continued

Recall, we have mr̈ − l2

mr3 = f(r), with constant energy

E =
1

2
mṙ2 +

1

2

l2

mr2
+ V (r) ≡ constant

which allows us to write

θ̇ =
dθ

dt
=

l

mr2

dθ =
ldr

mr2

√
2
m

(
E − V (r)− l2

2mr2

)
θ = θ0 +

∫ r

r0

dr

mr2

√
2mE
l2 −

2mV
l2 −

1
r2

θ = θ0 +

∫ u

u0

du√
2mE
l2 −

2mV (u)
l2 − u2

If we let f ∼ 1
r2 , we get that, with k as a coupling constant (i.e.

how much force is scaled by).

1

r
=
mk

l2

(
1 +

√
1 +

2El2

mk2
cos(θ − θ0)

)

an example of k for gravity is V = GmM
r , leaves k = GmM .

8.2.1 Kepler Orbits/Phase Diagrams

1

r
= c (1 + ε cos(θ − θ0))

ε =

√
1 +

2El2

mk2
≡ eccentricity of orbit

Now, we want to think about phase diagrams. We have

(
√
E)2 =

(
p√
2m

)2

+

(√
k

2
x

)2

So particles move on circles in this abstract phase space

√
k
2x

p√
2m

Recall our diagram of energy from the previous lecture,

Energy

~r

E1

E2

It has a corresponding phase diagram,

p

~r

This is a suuuuper rough approximation that you should verify on
your own using python or desmos or something. Use V ∼ 1

r2 −
s
r

where s is a constant.
If curves on the phase diagram are closed, they’re trapped solu-

tions, i.e. they want to stay within the potential well.
For given eccentricity (let cos θ = 1) we can calculate the mini-

mum r of the orbit in a straightforward manner.

rmin =
l2

mk(1 + ε)

and maximum r, we have

rmax =
l2

mk(1− ε)

There are also the unbound orbits, which give you

1

r
= C(1 + ε cos(θ − θ0))

the right hand side can be zero, which means rmax →∞.
Let’s examine the orbits. First, let r = 1

α (1 + ε cos θ), which
gives α = r + εr cos θ = r + εx. Then, we get

• ε = 0 → 1
r = mk

l2 which gives constant r, and is thus a circle.
Also note it would give x2 + y2 = α2 which also describes a
circle.
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• 0 < ε < 1 → 0 < 1 + 2El2

mk2 < 1 → −mk2
2l2 < E < 0. This case

corresponds to the area of our energy diagram beneath E = 0.

Completing the square, we alsonote that

(
x+ αε

1−ε2

)2

a2 + y2

b2 = 1,
where a = α

1−ε2 , b = α√
1−ε2 . a is called the semimajor axis,

and b the semiminor axis. ε is a unitless quantity. This centers
the ellipse at x0 = − αε

1−ε2 . The ellipse also has a focus, with

c2+b2 = a2, c being the focus. You can solve it to be c = αε
1−ε2 ,

and another focus at the origin.

• ε = 1. We get y2 = α2−2αx, since the x2 terms from our other
equation cancel, which gives the parabola y2 = −2α

(
x− α

2

)
.

• ε > 1. We find

(
x− αε

ε2−1

)2

a2 − y2

b2 = 1, which gives a hyperbola!

For a better explanation of what’s happening here/pictures, see
Taylor fig. 8.11.

8.2.2 Keplers Laws

This lets us derive keplers laws

1. Planets Move in ellipses with one focus at the sun (equiv to
condition 0 ≤ ε < 1)

2. Radius vector sweeps out equal area at equal time (equiv to
conservation of momentum dA

dt = 1
2r

2θ̇ = l
2m .

3. The square of the period of an orbit (T ) is proportional to the

cube of the semimajor axis (T 2 = 4π2a3

Gm0
). This can be shown

with dA
dt = l

2m → A = l
2mT = πab ≡area of ellipse.

Energy diagram, recall from previous week where the minimum
with one r is a circular orbit, i.e. dV

dr0
= 0, question is only whether

or not its stable, i.e. a relative minimum or maximum. there was
already a homework problem on this, so I would watch out if I
were you!

8.3 Ex: find stable circular orbits (this is very
similar to the homework!)

F (r) = −k
rn , which gives V (r) = k

(n−1)rn−1 , with effective potential

Ve(r) = l2

2mr2 −
k

(n)rn−1 .

Stable point of this? dV
dr = k

rn −
l2

mr3 = 0 which gives r0 =(
mk
l2

)−n+3
. So, for stable orbits, dV

dr = −nk
rn+1 + 3l2

mr4 > 0, which

gives (3− n) l
2

m > 0 which implies that n < 3 must be the case for
stable circular orbits.

If we want pertubations around a stable orbit, we can taylor
expand aroudn the equilibrium point (r0). We have the equation
of motion

mr̈ − l2

mr2
= −f(x) = −dL

dr

At this point, bale kind of gave up because he doesn’t want to give
away the answer to the homework, but hit me up if u have any
questions, the algebra SUCKS.

9 Hamiltonian Mechanics

9.1 Rutherford Scattering

We’re talking about quantum mechanics rn, because the hamilto-
nian is very imortant. Rutheford scattering, observed really large
alpha particle scattering which was weird.

cylindrical symmetry
target

incident flux (σ + dσ)

exiting flux (θ + dθ)

Some differential cross section of the angle between the horizontal
and scattering at infinity is given as

dσ(intodΩ) =
dσ

dΩ
dΩ

by into dΩ I have no idea what he measn yet. It will become clear.

σ =

∫
dσ

dΩ
dΩ =

∫ π

0

sin θdθ

∫ 2π

0

dϕ
dσ

dΩ
(θ, ϕ)

we could try doing this with conservation of angular momentum,
that l = mv0s.

Or, take the total energy E = 1
2mv

2
0 where v0 in both represents

the velocity at r = −∞. Eliminating v0, we have l =
√

2mE.
Integrating this for the impluse, we get

Ψ =

∫ ∞
r1

dr

r2

√
2mE
l2 + 2mV (r)

l2 − 1
r2

We can just cut to the chase, and say there’s a hyperbolic orbit
with central forcing, of which we already have an equation (doesn’t
this picture look kind of familiar?).

k = −z1z2e
2

deno ting coulomb force, then we can write (double check this in
the book, I was way too far away to see this coherently)

1

r
= −mz1z2e

2

l2
(1 + ε cosψ)

So, as r → ∞, we have 1
r → 0 = mz1z2e

2

l2 (ε cosψ + 1). This gives
that

cos2 θ

2
=
ε2 − 1

ε2

which gives

cot2 θ

2
= ε2 − 1 =

2Es

z1z2e2

Now, we have a solution for s,

s =
z1z2e

2

2E
cot2 θ

2

which gives

σ(θ) =
1

4

(
z1z2e

2

2E

)2

csc4 θ

2
=

s

sin θ

ds

dθ

This was a super messy derivation of this idea, so I would probably
look it up/check back into a textbook for a better idea, especially
because notation wasn’t super consistent/things were p hard to
see.
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9.2 Beginning Hamiltonian Mechanics

Recall we defined L(q, q̇, t) = T − V , with the appropriate euler
lagrange equations.

We also defined generalized momentum, p = ∂L
∂q̇ .

The hamiltonian formulation takes out the q̇ dependence and
replaces it with p.

H =
∑
i

piq̇i − L(q, q̇(q, p), t) = H(q, p, t)

We’re now working in a 2n dimensional “phase space” (p, q).
Dropping i’, we have

∂H

∂p
=

∂

∂p

(∑
i

piq̇i − L(q, q̇(q, p), t)

)

= q̇ + p
∂q̇

∂p
− ∂L
∂q̇

∂q̇

∂p

= q̇

∂H

∂q
=

∂

∂q

(∑
i

piq̇i − L(q, q̇(q, p), t)

)

= p
∂q̇

∂q
− ∂L
∂q
− ∂L
∂q̇

∂q̇

∂q

= −∂L
∂q

which, by the euler-lagrange equations gives

∂H

∂q
= − d

dt

(
∂L

∂q̇

)
= − d

dt
q

Finally, we might also take

∂H

∂t
=

∂

∂t

(∑
i

piq̇i − L(q, q̇(q, p), t)

)

= p
∂q̇

∂t
− ∂L
∂q̇
...

he goes too fast lmao.
Gives Hamiltons Equations of Motion

q̇ =
∂H

∂p

ṗ = −∂H
∂q

∂H

∂t
= −∂L

∂t

9.3 ex: hamiltonian, sho

We can do some fancy algrebra to derive that for a simple harmonic
oscillator, we get

H =
p2

2m
+

1

2
kx2

Note from Connor, ur friendly DSP boi, this is super similar to
quantum mechanics hamiltonian!

9.4 ex: Particle, Magnetic field

Trust and verify that the lagrangian is written as

L =
1

2
mṙ2 − eϕ(r, t) +

e

c
~̇r · ~A(r, t)

with B = ~∇× ~A, and ~E = −~∇ϕ− 1
c

d ~A
dt .

Basically just do the math out. I swear, I cannot see the board
on the other side of the room, so I’ll try and do this out on my
own, or talk to somebody in the class to get this example.

Hamiltons equations of motion: also gives u ray tracing, from
optics.

9.5 Recall

Recall that we can write the hamiltonian in terms of the lagrangian
as H = pq̇ − L(q, q̇(q, p), t), with p = ∂L

∂q̇ , called the canonical
momentum.

Using the euler lagrange equation, we derived

q̇ =
∂H

∂p

ṗ = −∂H
∂q

∂H

∂t
= −∂L

∂t

which are hamiltons equations of motions, which are all first order
equations which is convenient!.

9.6 Stationary Phase Derivation

Recall

S =

∫ t2

t1

Ldt

+ we used to minimize this bad boy. Now, let

S =

∫ t2

t1

(pq̇ −H) dt

Now, using calculus of variations, let’s replace q → q + εη, p →
p+ εχ, with η(t1) = χ(t1) = η(t2) = χ(t2) = 0, giving

S =

∫ t2

t1

((p+ εχ) (q̇ + εη̇)−H(q + εη, p+ εχ, t)) dt

which gives

δS = ε

∫ (
pη̇ + χq̇ − ∂H

∂q
η − ∂H

∂p
χ) +O(ε2)

)
dt

= ε

∫ t2

t1

dt

(
(q̇ − ∂H

∂p
)χ− (ṗ+

∂H

∂q
)η

)
In order for this to go to zero, we must have

q̇ − ∂H

∂p
= 0 ṗ+

∂H

∂q
= 0

which derives the equations of motion!

9.7 Ray Tracing

We can analogize this to ray tracing (which if I had to guess won’t
be on the exam). Basically, we can use energy to follow paths
through ray tracing.

10 Canonical Transformation

10.1 Laying the Groundwork

10.1.1 Legendre Transformations

Consider some function

12



y

x

n

m

We’re transforming to tangency space, so at some point we have
(in two variables)

f(x, y)

so that

f(x, y)→ df =
∂f

∂x
dx+

∂f

∂y
dy

and write

u =
∂f

∂x

v =
∂f

∂y

so we want to transform from (x, y)→ (v, y). write that

g = f − ux
dg = df − udx− xdu = (udx+ vdy)− udx− xdu

dg = vdy − xdu =
∂g

∂y
dy +

∂g

∂v
du

which, post legendre-transform gives

v =
∂g

∂y
x = −∂g

∂u

which kind of looks like the hamiltonian!

10.1.2 Hamiltonian⇔Legendre Transformation

(q, q̇, t)→ (q, p, t)

We can show this by saying that (letting lagrangian correspond
now to L instead of L),

dL =
∂L

∂q
dq +

∂L

∂q̇
dq̇ +

∂L

∂t
dt

p =
∂L

∂q̇

⇓

dL = ṗdq + pq̇ +
∂L

∂t
dt

d

dt

(
∂L

∂q̇

)
=
∂L

∂q
= ṗ

This then becomes

dH = q̇dp+ pdq̇ −
(
ṗdq + pdq̇ +

dL

dt
dt

)
= ḋp− ṗdq − ∂L

∂t
dt =

∂H

∂q
dq +

∂H

∂p
dp+

∂H

∂t
dt

which, equating term by term gives hamiltons equations of motion,
under a legendre transformation.

10.1.3 Steps for Solving Hamiltonian Dynamics

1. Choose coordinates q, construct L.

2. Get Canonical Momentum p = ∂L
∂q .

3. Find the hamiltonian H(q, q̇, p, t) = q̇p− L(q, q̇, t).

4. invert p = ∂L
∂q to get q̇(q, p, t)

5. Eliminate q̇ from H → H(q, p, t).

10.1.4 Particle in Gravity

L = T − V =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
−mgz

and

px = mẋ py = mẏ pz = mż

which gives

H =
1

m

(
p2
x + p2

y + p2
z

)
−
(

1

2
m
(
ẋ2 + ẏ2 + ż2

)
−mgz

)
Under the Legendre transformation, we get that

H(q, p) =
1

2m

(
p2
x + p2

y + p2
z

)
+mgz

which gives that dx
dt = ∂H

∂px
= px

m , so the whole thing just comes
out to be that

ṗz = p
∂H

∂q
= −mg

10.1.5 Liouville Theorem

Let’s take phase space

p

p

Let some box in p, q phase space with side lengths ∆p,∆q. Let
ρ ≡density of points in q, p, or phase space density.

How many particles cross the left face of the box (closest the p
axis, orthogonal to q) in time dt?

We write dn = ρ∆q∆p, with ∆q = dq
dt dt = qdt With indices, we

can say that
dN2 = ρq̇|q+∆q dt∆p

which gives

dN12 = dN1 − dN2 =
(
ρq̇|q − ρq̇|q+δq

)
dt∆p

we can do the same thing along the p axis as well.
Interpreting this, we can think of particles entering and exiting

the box. If more go in than come out, then we have some weird
shenanigans happening.

We can write the p, q equations as derived above as a single
differential equation

∂ρ

∂t
+

∂

∂q
(ρq̇) +

∂

∂p
(ρṗ) = 0

which is a continuity equation for phase space.
Simplifies to(

− ∂

∂q
(ρq̇)− ∂

∂p
(ρṗ)

)
dt∆q∆p =

∂ρ

∂t
∆t∆q∆p

where the left side is the particles entering, exiting the box in each
direction, and the right side is the change in density.

Wrriten in hamiltonian mechanics, the liouville theorem is ex-
pressed as

∂p

∂t
+
∂H

∂p

∂ρ

∂q
− ∂H

∂q

∂ρ

∂p
= 0

watch out for the Poisson Brachet. It’ll come up later.
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10.2 Canonical Transformations (not in book)

There’s some discussion of this in Hand + Finch.
We have some H(q, p, t), where p is the canonical momentum.

ṗ = −∂H
∂q

q̇ =
∂H

∂p

If we have a cyclic coordinate, it simplifies the problem, i.e. if
∂H
∂q = 0, then ṗ = 0⇒ p is a constant.

Good example of this principle is central force problems, since
L = 1

2mṙ
2 +r2θ̇2−V (r), potential exclusively depends on r, which

means ∂L
∂θ = 0→ l = mr2θ̇ ≡ constant.

Canonical Transformations are ways of finding convenient coor-
dinates to make the hamiltonian cyclic as well.

Lets call the transform Q = Q(pi, qi, t), and P = P (qi, pi, t).
If it makes some H cyclic in Q, then H = H(P ), which implies

Q̇ = ∂H
∂P = ω ≡ constant, Q = ωt+Q0, ṗ = −∂H∂Q = 0, p ≡const.

(q, p) are called canonically conjugate, that if Hamiltons equa-
tions hold for (q, p)⇔ (Q,P ) under canonical equations.

Hamiltons Principle

δ

∫
L(q, q̇, t)dt = 0 = δ

∫
L(Q, Q̇, t)dt

this means that δ(L − L)dt = 0. Because this is a time integral,
the lagrangian and the transformed lagrangian can differ by a total
differential and this would still be true.

δ

∫ t2

t1

dF

dt
dt = δ (F (t2)− F (t1)) = 0

which implies that

L− L =
dF

dt
with F called the generating function. It should have 2n + 1
independent variables.

There are four types of generating functions

F1 = F (qi, Qi, t)

F2 = F (qi, Pi, t)

F3 = F (pi, Qi, t)

F4 = F (pi, Pi, t)

going back to transformed lagrangian, we take L = K + dF
dt =∑

pq̇ −H, we can write this as∑
pq̇ −H =

∑
PQ̇−H+

dF

dt

10.2.1 Type 1 Generator

This gives that

dF1

dt
=
∂F1

∂q
q̇ +

∂F1

∂Q
Q̇+

∂F1

∂t

This can be expressed as∑
pq̇ −

∑
PQ̇−H +H =

∑ ∂F1

∂q
q̇ +

∑ ∂F1

∂Q
Q̇+

∂F1

∂t

which gives that

pi =
∂F1

∂qi

Pi = −∂F1

∂Q

H = H +
∂F1

∂t

10.2.2 2 Examples

Coordinate Swap take F1(q,Q) = qQ. Then

pi =
∂F

∂q
= Q

Pi = −∂F
∂Q

= −q

Simple Harmonic Oscillator Recall L = 1
2mq̇

2 + 1
2kq

2, which
gives

p =
∂L

∂q̇
= mq̇ → q =

p

m

H =
1

2m
(p2 +m2ω2q2)

ω2 =
k

m

Let’s try this:

p = f(P ) cos(Q)

q =
f(P )

mω
sin(Q)

if we put these into the old hamiltonian, we get

p2 +m2ω2q2 = f(P )2 cos2(Q) + f(P )2 sin2(Q) = f(P )2

which gives our new hamiltonian as

H =
f(P )2

2m

Let’s get a new type one generator as defined above, so that

p =
∂F

∂q

P = −∂F
∂Q

Carrying on with the hamiltonian that we already have, we get

p = mωq cotQ =
∂F

∂q

which gives that

F =

∫
pdq =

1

2
mωq2 cotQ

it is also easy to see that p = −∂F∂Q = 1
2mω

2q2 1
sin2(Q)

,

q =

√
2P

mω
sin(Q)

p = mω

√
2P

mω
cos(Q)

putting this all into the hamiltonian, we have

H =
1

2m

[
2Pmω cos2Q+mω2P sin2Q

]
which gives, cancelling out, that

H = ωP

since we knnow it doesn’t depend on time, we can write that

E ≡ H = ωP
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so P = E
ω , or energy per unit angular momentum, so we have that

Q̇ = ω, which gives
Q = ωt+Q0

Putting these back into the original solution, we find that

p =
√

2mE cos(ωt+Q0)

q =

√
2E

mω2
sin(ωt+Q0)

Let’s look at phase space!

p =
√

2mE

q =
√

2E
mω2

⇔

P

Q

E/ω

11 Rigid Body Motion

Definition 11.1. A rigid body is a body in which the mass ele-
ments are fixed with respect to one another.

ω
p

We have ~L = ~r× ~p, and p = mω, with point p rotating at an angle
θ away from ω, and momentum p at r′ = r sin θ along that vector

Some mass element δm, we get δ~L = ~r × δ~p = ~r × ~vδm, which
gives

~L =

∫
δm(~r × (~ω × ~r)

or for discrete mass elements, we have

~L =
∑
i

mi~ri × (ω × ~ri)

Then, we actually do the cross product out, we get

~ω × ~r = (ω2z − ω3y)x̂+ (ω3x− ω1z)ŷ + (ω1y − ω2x)ẑ

, so the whole thing comes out to be, after crossing with r again,L1

L2

L3

 =

∫ (y2 + z2)dm −
∫
xydm −

∫
zxdm

−
∫
xydm

∫
(z2 + x2)dm −

∫
yzdm

−
∫
zxdm −

∫
yzdm

∫
(x2 + y2)dm

ω1

ω2

ω4


with that big ol matrix defined as the Inertia Tensor, ~I.

Inertia Tensor has a couple of properties

• Symmetric and Positive Definite.

• Depends only on the shape of the system, not ω.

• Can only be calculated after choosing an origin and coordinate
system.

• Is diagnoalizable.

We could also write it in the following way,

Iij =

∫
all V

ρ(~r)

(
δij
∑
k

(xk)2 − xixj

)
dV

11.1 ex: Point mass in a plane

Some mass orbiting ẑ in the x − y plane, m, wiht ω = (0, 0, ω3)
and x2 + y2 = r2, we have

~L =

 ∫
y2 −

∫
xy 0

−
∫
xy

∫
x2 0

0 0
∫

(x2 + y2)dm

 0
0
ω3


=

 0
0

ω3

∫
(x2 + y2)dm


which just reduces to ~L = mr2ω3ẑ = mvrẑ, which is what we
expected anyways.

There’s also the parallel axis theorem, which we will discuss
later.

11.2 Kinetic Energy

We can also examine the kinetic energy, which is given by

dT = m
v2

2
=
dm|~ω × r|2

2

T =
1

2

∫ (
(ω2z − ω3y)2 + (ω3x− ω1z)

2 + (ω1y + ω3x)2
)
dm

=
1

2
~ω · (~I · ~ω) =

1

2
~ω · ~L

11.3 Center of Mass Coordinates

Say r = ~R+ ~r′, where ~R goes from origin to center of mass.
we have

~L =

∫
dm(~r × ~v) =

∫ (
(~R+ ~r′)× (~r′ + (~ω × ~r′))

)
(~R+ ~r′)× (~V + (~ω × ~r′) = ~r′ × ~v′ + ~r′ × (~ω × ~r′)

which gives that
~L = m~R× ~V + ~Lcm

We can also do this for KE, which would give us that

T =
1

2

∫
dmV 2 =

1

2

∫
dm|~V + (~ω′ × ~r′)|2

=
1

2
MV 2 +

1

2
~ω′ · ~Lcm

11.4 Principal Axes

Goal is to diagonalize the inertial tensor.

~I =

I1 0 0
0 I2 0
0 0 I3


where I1, I2, I3 are defined as the principal moments.

This kind of thing should be somewhat familiar from freshman
mechanics classes, since we have something like a plate in R3, ort-
thogonal to the z axis, the cross terms like xydm cancel in the
inertia tensor, but you get and eigenvalue problem.

We want ~L = ~I · ~ω1 = I1ω1, or ω1 lies along a principal axis.
Want

det

∣∣∣∣∣∣
Ixx − I Ixy Ixz

Ixy Iyy − I Iyz
Ixz Iyz Izz − I

∣∣∣∣∣∣ = 0
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11.4.1 Todo next lecture

~ω

11.5 Inertial Tensor

Ω1 =

√(
I2 − I1
I2

)(
I2 − I1
I1

)
ω2

cyclic differential equation

ω̇1 +

(
I3 − I2
I1

)
ω2ω3 = 0

ω̇2 +

(
I1 − I3
I2

)
ω1ω3 = 0

ω̇3 +

(
I2 − I1
I3

)
ω2ω1 = 0

11.6 Spinning Top

If we want to be more rigorous, we should include gravity and
torque.

Let some coordinate system ~r′ ≡ space coordinates ≡ fixed in
space.
~r is our body coordinates, rotating with some spinning top.
These are related by ~r′ = U~r.
Also θ, ϕ, ψ are the euler angles. We need to choose a convenient

definition for these, so let θ be the angle between z, x̂′3, and ϕ the
angle betwween x, x̂′2, and ψ the angle between the xy plane and
x̂′2.

So, step 1 is that if we rotate around z − x̂3 by some angle ϕ
(in xy plane), we get new coordinate transformation α, βγ, which
gives αβ

γ

 =

 cosϕ − sinϕ 0
− sinϕ cosϕ 0

0 0 1

xy
z


11.6.1 Step 2

Rotate around α by angle θ. Su, we getα′β′
γ′

 =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

αβ
γ


11.6.2 Step 3

Finally, wrotate by ψ about γ′x1

x2

x3

 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


11.7 gettting the euler angles! (space 2 body)

U∗ = U∗3U
∗
2U
∗
1 transforms from space to body, with U = U1U2U3

transforms from body to space.
We get the big transpose form of U as

U
∗

=

 cosψ cosϕ − sinψ sinϕ cos θ cosψ sinϕ + sinψ cosϕ cos θ sin θ sinψ
− sinψ cosϕ − cosψ sinϕ cos θ − sinϕ sinψ + cosψ cosϕ cos θ sin θ cosψ

sin θ sinϕ − cosϕ sin θ cos θ



11.8 Euler Angles, Body/Space Frames

The beginning of lecture was some complicated example using the
euler angles to transform into body coordinates. Here’s another
version of this problem.

11.8.1 Symmetric Top

We have I1 = I2 = I. It can be a cube, or really something
arbitrary. I3 might be different.

KE can be written T = 1
2~ω(I · ~ω) = 1

2 (I(ω2
1 + ω2

2) + I3ω
2
3).

Using this, and the formulation of the euler angles, we can write
down htat

ω2
1 = θ̇2 cos2 χ+ ϕ̇2 sin2 χ sin2 θ + 2θ̇ϕ̇ cosχ sinχ sin θ

with omega 2 defined in a similar manner, which gives

ω2
1 + ω2

2 = θ̇2 + ϕ̇2 sin2 θ

ω2
3 = (χ̇+ ϕ̇ cos θ)2

In gravity, there’s also potential V = mgl cos θ, so we can write
down the lagrangian

L =
I

2
(θ̇2 + ϕ̇2 sin2 θ) +

I3
2

(χ̇+ ϕ̇ cos θ)2 −mgl cos θ

From our work on canonical variables, we can note that

pϕ = constant

pχ = constant

we can calculate these then, as

pχ =
∂L
∂χ̇

= I3(χ̇+ ϕ̇ cos θ) = I3ω3

Which is angular momentum around x3.
Also, define a = I3ω3

I ≡const.
Now, we can calculate

pϕ =
∂L
∂ϕ̇

= Iϕ̇ sin2 θ + I3(χ̇+ ϕ̇ cos θ) cos θ ≡ constant

Define b =
pϕ
I .

We can calculate the total energy then as

E = T + U =
I2
2

(θ̇2 + ϕ̇2 sin2 θ) +
I3
2
ω2

3 +Mgl cos θ

This whole equation simplifies down to a nice form, which is b =
ϕ̇ sin2 θ + a cos θ.

If we wirte E′ = E − I3ω
2
3

2 , then we can have a one-dimensoinal
equation

E′ =
I

2
θ̇2 +

I

2

(b− a cos θ)2

sin2 θ
+mgl cos θ

We can look at this like an energy equation

θ

E

If we define θ̇2(1− u2) = u̇2, we can do some fancy substitution.
As u→∞, everythign goes as u3. Likewise for −∞.
If we now consider ϕ̇ = b−a cos θ

sin2 θ
, we can see that it will not have

zero average. In fact, it will look like some curly path between
these two lines on a sphere.
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12 Small Oscillations

12.1 Stationary Points

Consider a lagrangian L = 1
2mẋ

2 − V (x), with generalized coordi-
nates (x, ẋ).

Recall ELE
d

dt

(
∂L
∂ẋ

)
=
∂L
∂x

a stationary point is a point x0 such that ẋ0 = 0 ⇒= x0∀t,
which gives that ∂V

∂x = 0.
It’s a point with no force acting on a system.

mass on spring A mass on a spring (simple harmonic oscillator)
has potential V (x) = 1

2k(x− x∗)2, which looks as

x

V (x)

at those stationary points, there are small oscillations that we
can taylor expand to have that

mδẍ = −d2V
dx2 x=xi

δx

δx = Ae−iωt

ω2 = 1
m

d2V
dx2 x=xi

The most general expression for a lagrangian is

L(q, q̇) = T (q, q̇)− V (q)

with

T =
1

2

∑
Tikq̇iq̇k

or, in other words

T =
1

2

∑
i

mi|~̇ri|2

which allows some reexpression of T as

T =
1

2

∑
i,αβ

mi
∂~ri
∂qα

∂~ri
∂qβ

q̇αq̇β

=
1

2

∑
α,β

[∑
i

mi
∂~ri
∂qα

∂~ri
∂qβ

]
q̇αq̇β

if we wanted to write this down as a symmetric tensor (Tij = Tji),
then we should take some kinetic energy of the form

T =
1

2
(T11q̇

2
1 + T12q̇1q̇2 + T21q̇1q̇2 + T2@q̇

2
2)

and reexpress it as

T =
1

2
(T11q̇

2
1 +

T12 + T21

2
q̇1q̇2 +

T12 + T21

2
q̇2q̇1 + T22q̇

2
2)

For a more abstrat system, for a stationary point q0 where the
superscript denotes stationary status, not exponentiation, we have
that q̇k = 0 for ever k index, and that ∂V

∂qα
= 0∀α ∈ our range.

For the case where Tik depends on q, then our lagrangian is

L =
1

2

∑
i,k

Tik(q)q̇iq̇k − V (q)

which we can apply standard ops to to derive that

d

dt

[∑
k

Tαkq̇k

]
=

1

2

∑
i,k

∂Tik
∂qα

q̇iq̇k −
∂V

∂qα

the final form comes out to be∑
k

Tαkq̈k = − ∂V
∂qα

+
1

2

∑
i,k

∂Tik
∂qα

q̇iq̇k −
∑
k,s

∂Tαk
∂qs

q̇sq̇k

which are newtons equations for this lagrangian.
Now, we are considering the behavior of a system around a sta-

tionary point in n generalized coordinates.
We take the lagrangian and expand

L =
1

2

∑
i,k

Tik(q)q̇iq̇k − V (qi)

if we expand up to quadratic terms, we are taking

L =
1

2

∑
i,k

Tik(q(0)+δq)δq̇iδq̇k−V (q(0)−
∑
i

∂V

∂qi 0

δqi−
1

2

∑
i,j

∂2Vij
∂qi∂qj

δqiδqj

Constant terms we set to zero, and we get that (setting the mass
tensor Tik(q(0) = mik and Vij another tensor whos name i forget,
we have

L =
1

2

∑
i,k

mikq̇iq̇k −
1

2

∑
ik

Vikqiqk

in a single equation, we just end up with mẍ = −kx which is what
we expect.

This is apparently pretty easy in particular systems, so let’s take
a look at an example.

12.1.1 Example: Coupled Pendulum

Consider two identitical masses connected by two identical ropes,
ith generalized coordinates φ1, φ2, in a cartesian x, y system.

So,

x1 = e sinφ1 y1 = −e cosφ1

x2 = e sinφ1 + e sin(φ1 + φ2) y2 = −e cosφ1 − e cos(φ1 + φ2)

With the conclusion that

T1 =
1

2
ml2φ̇2

1

and

T2 =
1

2
m[l2φ̇2

1 + l2(φ̇1 + φ̇2)2 + 2l2φ̇1(φ̇1 + φ̇2) cosφ2]

The total kinetic energy then, is (after a lot of algebraic simplifi-
cation

T =
1

2
ml2

[
2φ̇2

1 + (φ̇1 + φ̇2)2 + 2φ̇1(φ̇1 + φ̇2) cosφ2

]
17



Potential energy is given by

V = −mgl cosφ1 −mg(l cosφ1 + l cos(φ1 + φ2)

= −mgl(2 cosφ1 + cos(φ1 + φ2)

So we want

∂V

∂φ1
= 0⇒ sin(φ1) + sin(φ1 + φ2) = 0

If we want to standardize our kinetic energy, we should rewrite
it as

T =
1

2
ml2[2φ̇2

1 + φ̇2
1 + 2φ̇1φ̇2 + φ̇2

2 + 2φ̇2
1 cosφ2 + 2φ̇1φ̇2 cosφ2]

=
1

2
ml2[(3 + 2 cosφ2)φ̇2

1 + φ̇2
2 + 2φ̇1φ̇2(1 + cosφ2)]

which gives

T11 = (3 + 2 cosφ2)ml2

T12 = T21 = (1 + cosφ2)ml2

T22 = ml2

Now, we have to expand the system, so that

V = −mgl
[(

1− φ2
1

2

)
2 +

(
1− (φ1 + φ2)2

2

)]
V =

1

2
mgl[2φ2

1 + (φ1 + φ2)2] =
1

2
mgl[3φ2

1 + 2φ1φ2 + φ2
2]

when we ignore constants, which is allowable because of the la-
grangian formalism.

Kinetic energy about our expansion goes as

1

2
ml2

[
5φ̇2

1 + 4φ̇1φ̇2 + φ̇2
2

]
Finally, this gives us the lagrangian

L =
1

2
ml2

(
5φ̇2

1 + 4φ̇1φ̇2 + φ̇2
2

)
− 1

2
mgl(3φ2

1φ1φ2 + φ2
2)

which means we can write down

mik =

[
5 2
2 1

]
Vik =

[
3 1
1 1

]
ω2

0

where ω2
0 = g/l. This just gives us a solution of the form qk =

Ake
−iωt, which we know how to solve.

−ω2mαk + Vαk)Ak = 0

which is a statement about whether or not the solution has non-
trivial solutions, i.e. it only does if

det
(
V̂ − ω2m̂

)
= 0

Now, let’s try taking

∑
ik

A
(s)
i (Vik − ω2

smik)A
(s)
k = 0⇒ ω2

S =
VikA

(s)
i A

(s)
k

mikA
(s)
i A

(s)
k

We now want to solve

det

([
3ω2

0 − 5ω2 −ω2
0 − 2ω2

ω2
0 − 2ω2 ω2

0 − ω2

])

which gives a characterisitc equation

ω4 − 4ω2ω2
0 + 2ω2

0 = 0

which gives that

ω2
1 = ω2

0(2 +
√

2)

and

ω2
2 = ω2

0(2−
√

2)

and then we find the eigenvectors of this matrix using usual linear
algebra methods.

Recall we have some L = 1
2

∑
i,k Tikq̇iq̇k − V (q) is the most

general lagrangian, with
∑
i,k Tikηiηk > 0∀ηi, η2

1 + . . .+ η2
n 6= 0.

Then, we find stationary point ∂V
∂q = 0 ⇒ q

(0)
i , q2 = q

(0)
i + δqi,

which expands to the following form

L =
1

2

∑
i,k

mikδq̇iδq̇k −
∑
i,k

Vikδqiδqk


with Vik = ∂2V

∂qi∂qk q(0)
.

Guess solution is of the form qk = Ake
−iωt, or more generally,∑

k

(Vik − ω2mik)Ak = 0

or

(V̂ − ω2m̂) ~A = 0

12.2 Some Hamiltonian

we’re using the einstein summation convention.

H = pj q̇j − L =
∂L
∂q̇j

qj − L

this expands to

∂L

∂q̇j
=

∂

∂q̇j

1

2

∑
i,k

Tikq̇iq̇k

 =
1

2

∑
i,k

Tikδij q̇k +
∑
i,k

Tikq̇iδkj


which gives generalized momentum (of further simplification

pj =
∑
i

Tij q̇i

with

H =
∑
i,j

Tij q̇iq̇j−
1

2
Tij q̇iq̇j+V (q) = T+V =

1

2

∑
Tikq̇iq̇k+V (q)

Recall that Tik a function of q. So, we want to expand the hamil-
tonian around small oscillations or some stationary point, and it
becomes

H =
1

2

∑
i,k

mikq̇iq̇k +
∑
i,k

Vikqiqk


with V (q(0)) = 0 by definition.

Theorem 12.1. Suppose that ∀ηi|η2
1 + . . . + η2

n > 0 we have
Vikηiηk � 0, then te stationary point q(0) is stable, then qi =
Aie
−iωt, and ω ∈ R.
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Proof. We have

H0 −
1

2

∑
i,k

Vikqiqk =
1

2

∑
i,k

mikq̇iq̇k

which, we know the sum term on the right is always positive at a
stable point (since it goes up), which gives with H0 constant, that
oscillation, with ω ∈ R.

CONNOR NOTE: I’m pretty sure that Vik is just the hessian
matrix for V .

Let ω2
s , A

s
k the eigenvalue, vector correspondent to the root ω2

s .
We have then that

(Vik − ω2
smik)Ask = 0

and left multiply by adjoint of Ask to get∑
ik

=
∑
ik

AsiVikA
s
k = ω2

s

∑
i,k

mikA
∗(s)
i A

∗(s)
k

where we;re allowed to change multiplication order only in index
notation because they’re numbers.

That gives

ω2
s =

∑
i,k VikA

∗(s)
i A

(s)
k∑

i,kmikA
∗(s)
i A

(s)
k

want to show that ∀ηi ∈ C
∑
i,kmikηiηk > 0, multiplying the two

by complex conjugates makes it poisitive.

Let’s introduce another A
(α)
i , and take

A
∗(α)
i A

(s)
k Vik = ω2

smikA
∗(α)
i A

(s)
k

A
(s)
i A

∗(α)
k Vik = ω2

αmikA
∗(α)
k A

(s)
i

which subtracting one from the other

ω2
s − ω2

α = mikA
(α)
i A

(s)
k ≡ 0

for nondegenerate cases, eigenvectors must satisfy∑
i,k

mikA
∗(α)
i A

(s)
k ≡ 0

i.e. for nondegeneracy, it’s some sort of generalized norm over a
space with metric mik.

Check out Goldstein for a proof f this.
Finally, suppose we have every frequency, eigenvector, how do

we write a general solution?

qk =
∑
s CsA

(s)
k e−iωst Cs ∈ C

12.2.1 Model of a Molecule

consider some

m M m

which gives (after writing down the lagrangian)

mik =

m 0 0
0 M 0
0 0 m


Vik = k

 1 −1 0
−1 2 −1
0 −1 1



which we diagonalzie to −k2(k − ω2m) = 0, which gives three
possible roots

ω = 0

ω2 =
k

m

ω2 =
k

m
(1 + 2

m

M
)

we just find the eigenvectors that correspond to these eigenvalues,
and we’re sitting pretty.

For ω = 0, the velocities are symmetric, potential is independent
of direction, only depends on displacement of x1, x2, x3.

for ω2 = k
m , we get 0 −k 0

−k 2k − kMm −k
0 −k 0

A1

A2

A3

 = 0

which has, so we have A2 = 0, with eigenvector 1
0
−1


Final eigenfrequency is going to give−2k mM −k 0

x x x
0 −k −2k mM


which gives A1 = A3 and A2 = −2mMA1, so eigenvector is

A

 1
−2mM

1


12.2.2 Another Example. More Algebra!

mmmmmmm

basically, it’s a bunch of masses on a string that all are oscillating.
It’s a bit odd. Work this out, there’s #TOO #MUCH #ALGE-
BRA.

12.3 Something New

Considedr N masses connected by some medium with tension τ ,
whihcm eans we need yn n = 1→ N , withh yeach yk given as the
displacement above equilibrium

Lagrangian given as

L =
1

2

(
N∑
k=1

mẏ2
k −

n∑
k=0

τ

d
(yk − yk+1)2

)
: y0 = 0, yN+1 = 0

we need to assume tht mik = mδik, and we have that

Vik =
τ

d


2 −1 0 . . . 0
−1 2 −1 0 . . .
0 −1 2 −1 . . .
... 0

. . .
. . .

...
0 . . . . . . −1 2


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So, if we want to find the eigenmodes, we just take ||V̂ −ω2m̂|| =
0, which gives us

det

∣∣∣∣∣∣∣∣∣∣∣


2− ω2

ω2
0
−1 . . . 0

−1
. . .

. . .
...

...
. . .

. . .
...

0 . . . . . . 2− ω2

ω2
0



∣∣∣∣∣∣∣∣∣∣∣
If we wanted to solve this for two masses, we have

det

∣∣∣∣ x −1
−1 x

∣∣∣∣
in 3 dimensions, we should have

det

∣∣∣∣∣∣
x −1 0
−1 x −1
0 −1 x

∣∣∣∣∣∣
which gives eigenfrequencies ω = ω0

√
2 and ω = ω0

√
2±
√

2.
Also always true that ω 6 →∞. You can just use a computer to

do this, but we can use recursive relations.
Lets call ΛN the determinant of our giant matrix of said form.

You can use a recurrence relation ΛN = xΛN−1 − ΛN−2.
If we write down lagranges equation, we get

mÿk =
∂L
∂yk

= −τ
d

(yk − yk+1)− τ

d
(yk − yk−1)

if we guess teh form is of yk = ei(kγ+δ), we can reqrite the above
as

ω2eikγ = ω2
0e
ikγ(1− eiγ) + ω2

0e
ikγ(1− e−iγ)

which can simplify do

ω2 = ω2
0(2− 2 cos γ) = 4ω2

0 sin2 γ

2

of course γ not arbitrary, because we must have y0 = yN+1 = 0,
which means we must have

yk = cos(ikγ + δ) cos(ωt+ ϕ)

which givess y0 = cos δ cos(ωt+ ϕ)⇒ δ = (2n+1)π
2 . and γ = πn

N+1 ,
which just gives out standing waves in the end!

We can think of γ/d as the wavenumber, which, if we think
about 2π

λ = γ
d , our wavenumber is not arbitrary, which means we

need to have that equal πn
d(N+1) , where the denominator is L, the

length between boundaries of the medium.
Or, L

λ = n
2 .

12.4 Traveling Wave

This is not a general solution however. Imagine the case where we
perturb one mass in the center of hundreds of masses. γ is not
fixed here, because the boundary conditions don’t know about the
pertubation until later.

We can try to find a solution for some traveling wave yk =
Ake

i(kγ−ωt), where there’s some dispersion relation ω = 2ω0 sin γ
2 .

If we assume small γ, we have immediately that ω = ω0γ = ω0d~k
where ~k is the wavevector, with some speed of sound cS =

√
τ
md ×

d =
√

τd
m .

We can be more strict though. Let’s consider the continuous
limit of our system, letting d → 0, k → ∞,m → 0, with linear
mass density ρ = m

d .
Now, we have some function y(x, t), with

ÿ = ω2
0

∂yk+1/2

∂x
d− ω2

0

∂yk−1/2

∂x
d = ω2

0d
2 ∂

2y

∂x2

which is just the wave equation, for constant density, linear mass
density.

∂2y

∂t2
= ω2

0d
2 ∂

2y

∂x2

Going through the derivation again, we have the more general
form of

∂2y

∂t2
=

1

ρ(x)

∂

∂x

[
τ(x)

∂y

∂x

]
If we rewrite the wave equation as

∂2y

∂t2
= c2s

∂2y

∂x2

we find that in this wave equation, ω
cs
L = πn, which is just a large

limit of the formula we had before.

12.5 Lagrangian Density

We can also do this using the lagrangian, by making an argument

L =
1

2
ρ(x)

(
∂y

∂t

)2

− 1

2
τ(x)

(
∂y

∂x

)2

The way we arrive at this conclusion is by varying the functional

δ

∫ t2

t1

∫
D
L(x, t, y, ∂xy, ∂ty) = 0

A WHOLE LOT OF ALGEBRA LATER, the correct answer will
fall outof the thing.

the final form, we get

∂

∂t

(
∂L

∂(∂ty)

)
+

∂

∂x

(
∂L

∂(∂xy)

)
=
∂L
∂y

12.6 Hamiltonian Density

We have some H, we can introduct some continuous medium ver-
sion of this, with L(x, t, y, ∂ty, ∂xy), with some generalized mo-
menta ~p = ∂L

∂(∂ty) , then introduce hamiltonain denstiy

H = p∂ty = L =
1

2
ρ(x)

(
∂y

∂t

)2

+
1

2
τ(x)

(
∂y

∂x

)2

Lagrangian density for some discrete masses on string, with yk
change in y, and ηk displacement in x, then

L =
1

2
ρ(x)

(
∂y

∂t

)2

− 1

2
τ(x)

(
∂y

∂x

)2

+O(η)

where O(η) higher order terms
Recall our equation of motion

∂

∂x

(
τ(x)

∂y

∂x

)
= ρ(x)

∂2y

∂t2

if we require τ constant, then we get ∂2y
∂x2 = 1

c(x)
∂2y
∂t2 .
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13 Solving the Wave Equation

Two methods of solving

• Computer

• Pertubation Theory (only valid for λ� [ d
dx (ln(l′′s ))]−1 or λ�

1
1
cs

dLs
dx

. Often called the WKB approximation. Basically λ

is less than the second x derivative of a typical length scale.
GOOGLE.

Let’s take the following new variables,

ξ = x− vt
η = x+ vt

so that (x, t)→ (ξ, η). So, we now have

∂y

∂x
=

(
∂

∂ξ
+

∂

∂η

)
y

∂2y

∂x2
=

(
∂2

∂ξ2
+ 2

∂2

∂ξ∂η
+

∂2

∂η2

)
y

∂y

∂t
= cs

(
∂

∂η
− ∂

∂ξ

)
y

∂2y

∂t2
= c2s

(
cs
∂2

∂ξ2
− 2

∂2

∂η∂ξ
+

∂2

∂η2

)
y

so we can find some solution by setting

y(x, t) = f(x− cst) + g(x+ cst)

if we set g ≡ 0, then

y(x, t) = f(x− cst) y(x, 0) = f(x)

cs∆t

traveling wave solution, it only goes from x→ x+ cs∆t.
In the arbitrary solution, we have

y(x, t) = f(x− ct) + g(x+ ct)

where f, g are determined by initial conditions. (i.e. at t = 0, we
have f(x) + g(x) = y0(x)).

taking
∂g

∂x
− ∂f

∂x
=

1

cs
ẏ0(x)

we integrate to see that

g(x)− f(x) =
1

cs

∫ x

x0

ẏ0(x′)dx′

which gives

f(x) = y0(x) =
1

c

∫ x

x0

ẏ0(x′)dx′

g(x) = y0(x) +
1

c

∫ x

x0

ẏ0(x′)dx′

Then, we also have

y(0, t) = f(x− ct) + g(x+ ct)

so we can write the D’lambert solution to the wave equation.

y(x, t) =
1

2
[y0(x− ct) + y0(x+ ct)] +

1

2c

∫ x+ct

x−ct
ẏ0(x′)dx′

for a small pertubation, the solution of this immediately becomes
that there are two pulses

propagating in opposite directions.

13.1 General Solution

The generalized wave equation can be written

∇2ψ =
1

c2
∂2ψ

∂t2

There are several categories of solutions to consider. First is a
standing wave, ψ(~r, t) depends as A(~r)e−iωt.

We get the Helmholtz Equation that describes such solutions.

∇2A(r) +
ω2

c2
A(~r) = 0

The 1-d case (say for a string with fixed boundaries is given as

∂2A

∂x2
+
ω2

c2
A = 0

so given that A(0) = A(L) = 0, then the boundary condition for
the left gives A(x) = a sin

(
ω
c x
)
. We also need sin

(
ω
c L
)

= 0, then
possible frequencies given Ω = { cπnL |n ∈ Z}.

So, the general solution is written

ψn(x, t) = e−iωnt sin
(πn
L
x
)

with ωn = πn
L c.

Fun math fact, we can write down the general solution for one
dimension as

ψ(x, t) =

∞∑
n=1

[an cos(ωn)t+ bn sin(ωnt)]× sin
πn

L
x

if you do the math out you get thatt

an =
2

L

∫ L

0

ψ(x, 0) sin
(πn
L
x
)
dx

ωnbn =
2

L

∫ L

0

∂ψ

∂t
sin

π

n
Ldx

13.2 2-d Helmholz

ψ = e−iωtA(x, y)

Say some membrane, with ψ some oscillation in z over a bounded
membrane

y

x
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Let’s take (
∂2

∂x2
+

∂2

∂y2
+
ω2

c2

)
A = 0

under teh assumption that A is separable, i.e. A = X(x)Y (y).
Then we can write

X ′′(x)Y (y) + Y ′′(y)X(x) +
ω2

c2
XY = 0

which, we can divide by XY to get

X ′′

X
+
Y ′′

Y
+
ω2

c2
= 0

so, let’s write some stuff down

X ′′(x) = −λX, λ ≡ const

Y ′′(y) = −µY µ ≡ const

we have the boundary conditions that X = a sin
(√

λx
)

, also with

sin
(√

λL
)

= 0, so we have

Xn(x) = a sin
(πn
L
x
)

Ym(y) = b sin
(πm
L
y
)

we also know that

ω2

c2
(λ+ µ)⇒ ω2

nm

c2
=
π2(n2 +m2)

L2

which gives some general solution

ψ(x, y, t) =

∞∑
n=1

∞∑
m=1

(anm cos(ωnmt) + bnm sin(ωnmt))Xn(x)Ym(y)

13.2.1 Circular Boundary

If we have some circular boundary, we still have the same helmholz,
and A = A(r, θ). We rewrite the laplacian in cylindciral coordi-
nates and get

1

r

d

dr

(
r
∂A

∂r

)
+

1

r2

∂2A

∂θ2
+
ω2

c2
A = 0

Apply condition A(r, 0) = A(r, 2πR0), and A(r, θ) = R(r)e−imθ.

13.2.2 Bessel function

y′′(x) +
1

x
y′(x) +

(
λ2 − n2

x2

)
y = 0

so that the Bessel Functions of order n are given as solutions to
this bad boy.

y(x) = Jn(λx)

We have

R′′(r) +
1

r
R′(r) +

(
ω2

c2
− m2

r2

)
R = 0

which gives solution

R = Jm(
ω

c
r)

we apply that it must satisfy the boundary condition Jm( ωcsR0 = 0,
which give solutions. I don’t think it’s gonna be super important
to know how to solve this, but basically it;s the roots of the bessel

function (this is the wave equation for a spherically propagating
wave, which is how the double slit experiment works!).

so the full on solutions are given as

ψ = Jm

(ωnm
c

)
×
{

cos(mϕ)
sin(mϕ)

}
××e−iωnmt

If we consider the case for oscillaating membranes on a cylinder,
we’d write down

1

r

∂

∂r

(
r
∂A

∂r

)
+

1

r2

∂rA

∂θr
+
∂2A

∂z2
+
ω2

c2
A = 0

which becomes, with A = R(r)Z(z)e−imθ

1

Rr

∂

∂r

(
r
∂A

∂r

)
− m2

r2
+
Z ′′(z)

Z
+
ω2

c2
= 0

we just get anotherr

Z ′′(z) + λZ(z) = 0

which gives solutions of the bessel equation with differend condi-
tions, we fund

R′′ +
1

r
R′ − m2

r2
R+

(
ω2

c2
−
(πn
L

)2
)
R = 0

which reduces

R′′ +
1

r
R′ +

(
ω2

c2
−
(πn
L

)2

− m2

r2

)
R = 0

R(r) = Jk(

√
ω2

c2
−
(πn
L

)
r)

14 Nonlinear Mechanics + Chaos

You’re gonna need to read the chapter and code to solve the ma-
jority of these problems. There are only a few of these that we can
solve and understand analytically.

14.1 Van der Pol Oscillator

This is a van der pol oscilator.

Ie−iωt

14.2 Duffing’s Oscillator

two springs attached to a mass in a plane with relaxed length l0.
So we have

U =
1

2
k(
√
x2 + l2 − l0)22

22



which we expand to be (taylor about 0)

∂U

∂x
= 2k(

√
l2 + x2 − l0)

(
1

2
(l2 + x2)1/22λ

)
= 2k

(
x− xl0√

l2 + x2

)

∂2U

∂x2
= 2k

(
1− l0l

2

(l2 + x2)3/2

)

∂3U

∂x3
= 6kl0l

2(x2 + l2)−5/2x

∂4U

∂x4
=

6kl0
l3

So, when we put in the right taylor expansion coefficients, the
effective potential beomes

U(x) ≈ U(0) + k

(
1− l0

l

)
x2 +

1

4

kl0
l3
x4 + . . .

So the force becomes

F = −∂U
∂x

= −2k

(
1− l0

l2

)
x− kl0

l3
x3

There’s a spring term, and a cubic term.
So we want to solve the following differential equation

mẍ+ 2βmẋ+ 2k

(
1− l0

l

)
x+

kl0
l3
x3 = f(t)

If we check this out in phase space, we look at

x

U(x)

x

ẋ

if we actially account for the cubic term in potential, however,
we’re going to get a taylor expansion that looks more like

x

U(x)

x

i.e. there are multiple stable points in phase space.
If we go back to solving this bad boi in generalit, we’ll take

ẍ+
ẋ

Q
+ x+ εx3 = f cosωt

Now, let’s let Q → ∞ so there’s no damping, and fourier expand
this,

x(t) =
∑
n

An(ω) cos(nωt)

with the differential equation being now

ẍ+ x+ εx3 = f cos(ωt)

So now, we want to take a look at the harmonics so we have (even
terms go away since they correspond to the sin components))

x(t) = A1 cos(ωt) +A3 cos(3ωt) + . . .

ẋ = −A1ω cosωt− 3ωA3 sin(3ωt)

ẍ = −ω2A1 cosωt− 9ω2A3 cosωt

Making use of the trig id that

cos3 x =
3 cos(x) + cos(3x)

4

we have our differential equation as

(1− ω2)A1 cosωt+ (1− 9ω2)A3 cos(3ωt) + . . .
+ ε

4 (3A3
1 cosωt+A3

1 cos(3ωt) + . . .)
= f cosω(t)

if we group our coefficients by n, we get

(1− ω2)A1 + ε
3

4
A3

1 = f

(1− 9ω2)A4 + ε
1

4
A3

1 = 0

So, graphically it looks a bit like

A1

ω

where solutions are given as intersections of these curves.
If we put damping back in, we have (i.e. Q finite)

x = a cosωt+ b sinωt

ẋ = −aω sinωt+ ωb cosωt

ẍ = −aω2 cosωt− bω2 sinωt = −ω2x

, which gives us an equation from our initial requirements that

a(1− ω2) cosωt+ b(1− ω2) sinωt+ bω
Q cosωt+ 3εar2

4 cosωt

+ 3εbr2

4 sinωt− aω
Q sinωt

= f cosωt

which gives a solution for r2 as a function of ω

r2 =
f2(

1− ω2 + 3εr2

4

)2
+ ω2

Q2

which gives you pictures that kind of look like this
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r

ω

high Q

low Q

this gives rize to a field of study called catastrophe theory, in which
there are discontinuous changes in phase and r.

This is like magnetic fields and hystereisis. Look this up in free
time.

14.3 Simple Pendulum

Say we have some rigid body

x

y

Small oscillations, we have

r̂ = r(ŷ cos(θ + ϕ) + x̂ sin(θ + ϕ))

and
~v = θ̇r [−ŷ sin(θ + ϕ) + x̂ cos(θ + ϕ)]

then for U we write

U = mgd(1− cos θ)

with

E =
1

2
Iθ̇2 +mgd(1− cos θ)θ̇ = ±

√
2

I
(E −mgd(1− cos θ)

So we think about 1 − cos θ = 2 sin2( θ2 ). Let θ0 be the max value
of θ, i.e. where our approximation starts to fall apart.

To solve, we can evaluate

T =
2r0√
gd

∫ θ0

0

dθ√
sin2 θ0

2 − sin2 θ
2

Let k = sin θ0
2 and kz = sin θ

2 , so we write

dz =
1

2

cos θ/2

k
dθ

which makes

T =
2r√
gd

∫ 1

z=0

zkdz√
1− k2z2

1

k
√

1− z2

in the small angle approxmation, we have√
1− k2z2 ≈ 1 +

1

2
k2z2

which allows us to break up T into some shit that requires a lot of
trig substitution, which ultimately yields

T =
4r0√
gd

(
π

2
+

1

2
k2π

4

)
=

2πr0√
gd

(
1 +

1

4
sin2 θ0

2
+ . . .

)

which gives us a term T0 that tells us how much variation we have
from the simple harmonic oscillator

T0 =
2πr0√
gd

For instance, if we plug in θ0 = 23◦, we get about a 1% change.
Now, we do some

14.3.1 Pertubation Theory

and write down the ODE

ẍ+ ω2
0x− λx2 = 0

which, looking for x(λ, t)

x(λ, t) = x0(t) + λx1(t) + λ2x2(t) + . . .

ẋ = ẋ0 + λẋ1

ẍ = ẍ0 + λẍ1

which gives

ẍ+ ω2
0x− λx2 = 0

ẍ0 + λẍ1 + ω2
0(x0 + λx1)− λ(x0 + λx1)2 = 0

ẍ0 + λẍ1 + λẍ1 + ω2
0λx1 − λx2

0 − 2λ2x0x1 − λ3x1 = 0

first order perturbation of the thing, so if we’re forcing it

ẍ1 + ω2
0 = A2 cos2 ω0t

So, what I think he did

x(t) = x0 + λx1 =A cosω0t− λ
A2

6ω2
0

(cos(2ω0t)− 3)

3-wave coupling.
Kolomogorov (1941). No natural scale/boundary condition in

hte problem
Imagine some eddy, that you’ve just broken up

15 Infinitesimal Canonical Transforma-
tions

(this stuff is not examinable) Consider some

H̃ = H +
∂F (g,Q, p, P, t

∂t

such that p1 = ∂F
∂q , P1 = − ∂F

∂Q1
where F is some generating func-

tion.
Maybe we let S = qP , then it’s just the identity transformation.

If we taek
S = qP + εG(q, p, t)

then

H̃ = H +
∂S

∂t

and p = ∂S
∂q , and Q = ∂S

∂P , so we want to fund P (ε) ≈ P (ε =

0) + ε∂P∂ε . . ., and same for Q which gives us

0 =
∂p

∂ε
+
∂G

∂q
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together, these give

P = p− ε∂G
∂q

Q = q + ε
∂G

∂p

Now, if we choose our G to be the hamiltonian, i.e. G(q, p, t) =
H(q, p, t), then

p ≈ p− ε∂H
∂q

= p+ εṗ

q ≈ q + ε
∂H

∂p
= q + εq̇

If we take ε to be dt, then we can think of the hamiltonian as being
the propagator of time translation, i.e. using the hamiltonian as
a generating function of canonical transformations gives out time
translation.

If we take G = ẑ · L̂z, we get out that xp−ypx, which takes

X ≈ x+ ε
∂G

∂px
= x− εy

Y = y + ε
∂G

∂py
= y + εx

which shows angular momentum is the generator of rotation!!
(Shoutout to my 137a peeps)

What if we want to be more general, examining what happens
to a function u(Q,P, t) under such transformations?

du

dt

∣∣∣∣
t=0

=

(
∂u

∂Q

∂Q

∂ε
+
∂u

∂P

∂P

∂ε

)∣∣∣∣
ε=0

which is approximately

∂u

∂ε
=

(
∂u

∂q

∂G

∂p
− ∂u

∂p

∂G

∂q

)
which takes

u(t) = u(q, p, t) + ε

(
∂u

∂q

∂G

∂p
− ∂u

∂p

∂G

∂q

)
where the term on the left is called the Poisson Bracket of {u,G}

{u,G} =
∂u

∂q

∂G

∂p
− ∂u

∂p

∂G

∂q

Generally, if we take

du

dt
=
∂u

∂q

∂

∂q, t
+
∂u

∂p

∂p

∂t
+
∂u

∂t

=
∂u

∂q

∂H

∂p
− ∂u

∂p

∂H

∂q
+
∂u

∂t

= {u,H}+
∂u

∂t

some more properties of poisson brackets Bale isnt’ going to derive.

• [u, v] = −[v, u]

• [u, u] = 0

• [(u1 + u2), v] = [u1, v] + [u2, v]

• [u1u2, v] = u1[u2, v] + [u1, v]u2

• (also jacobi identity)

and if we have
∂u

∂t
= [u,H] = 0

then u is a constant of motion. Also, you can take poisson brackets
and generate more conserved quantities (i.e.

d

dt
[u, v] = 0

16 Final Review, RRR Week

Talking about what bale thinks the priorities are (final is 30%).
Evans 10.
A bit less than comprehensive, thinking 6-7 problems (6.5 on

average), 2 of them will be small coupled oscillators, 1 on rigid
body rotation, guarunteed.

Others will be distributed amongs lagrangian, linear oscillators
and central force motion (probably one of each). Also, Hamilto-
nian.

You get one x2 sided 8.5x11 cheat sheet. Continuum
mechancis/wave equations is not examinable. Think of discrete
coupled oscillator problems to begin with. No rutherford scatter-
ing.

Rigid body rotation w/ external torques and forces (definitely
study this).

Coriolis force, etc not explicitly examinable. Coordinate trans-
formations are really just euler angles

This is just for fun, area is consered under canonical transfor-
mations is equivalent to Liouville theorem.

If we talked about generating functions, he would explicitly give
us the generator.

Learning more about generating functions

• Griener

• Fetter and Walecka

• Goldstein

• Hand and Finch

• Marion and Thornton

• Symon

¡++¿
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