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1 Sobolev Spaces

The reference for this section is Evans Chapter 5., and Sung-Jin Oh’s 222A lecture notes, section 11.

1.1 Introduction to Sobolev Spaces

We begin with an introduction to the basics of Sobolev Spaces.

Definition 1. Let U be an open subset of Rd, and u ∈ D′(U). The kth order Lp-based Sobolev Norm
of u is defined as:

||u||Wk,pU =

 ∑
α:|α|<k

||Dαu||pLp(U)

1/p

Here, Dα is the weak derivative, and Dαu ∈ Lp(U).1

Remark. The sum over ||Dαu||Lp is motivated by its appearance in energy-method solutions to PDE’s
found in 222A.

Definition 2. The Lp-Sobolev space of order k on U is defined as

W k,p(U) = {u ∈ D′(U) : ||u||Wk,p(U) <∞}

Similarly, we call the subspace ofW k,p(U) which vanish to appropriate order on the boundary

W k,p
0 (U) = C∞

c (U)
||·||

Wk,p(U) ⊂W k,p(U)

When p = 2, we have many extra analytical tools, since the Fourier transform is an L2 isometry.
This justifies special notation for this case.

Notation. We denote by Hk(U) =W k,2(U), and Hk
0 (U) =W k,2

0 (U).

We also have a special notation for inequalities that hold up to a multiplicative constant.

Notation. If, for some c > 0, A ≤ cB, then A ≲ B. If A ≲ B and B ≲ A, then A ≃ B.

Prop 1.1. Some basic facts aboutW k,p(U) and Hk(U).

i. For all k ∈ Z≥0 and 1 ≤ p ≤ ∞, (W k,p(U), || · ||Wk,p(U)) and (W k,p
0 (U), || · ||Wk,p) are Banach

spaces.

ii. For all k ∈ Z≥0, and denoting ⟨u, v⟩Hk(U) =
∑

α:|α|≤k⟨Dαu,Dαv⟩L2(U), both (Hk(U), ⟨·, ·⟩Hk(U))

and (Hk
0 (U), ⟨·, ·⟩Hk(U)) are Hilbert Spaces.

iii. (Fourier Analytic Characterization of Hk). If u ∈ Hk(U), then ||u||Hk ≃ ||û||L2 + |||ξ|kû||L2 ≃
||(1 + |ξ|2)k/2û||L2 .

1This is equivalent to the other definition given in lecture: ||u||Wk,p(U) =
∑

α:|α|<k ||D
αu||Lp(U).
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. For (i), we first check that || · ||Wk,p is a norm. The triangle inequality may be verified by the
elementary calculation, where u, v ∈W k,p:

||u+ v||Wk,p =

 ∑
α:|α|≤k

||Dα(u+ v)||pLp

1/p

≤

 ∑
α:|α|≤k

(||Dαu||Lp + ||Dαv||Lp)p

1/p

≤

 ∑
α:|α|≤k

||Dαu||pLp

1/p

+

 ∑
α:|α|≤k

||Dαv||pLp

1/p

= ||u||Wk,p + ||v||Wk,p

The first inequality follows from the fact that || · ||Lp is a norm. It is obvious that ||λu||Wk,p =

|λ|||u||Wk,p .
It remains to check that W k,p is complete. Let {fn}∞1 be a Cauchy sequence in W k,p. By

definition, every Dαfi ∈ Lp, and since Lp is complete every Dαfi converges to a function
fα ∈ Lp. So, the claim is that when α = (0, . . . , 0), we have convergence in Lp: fm → f(0,...,0) :=

f ∈W k,p. To see that f ∈W k,p, fix a test function ϕ ∈ C∞
0 , and integrate

ˆ
fDαϕdx = lim

n→∞

ˆ
fnD

αϕdx

= lim
n→∞

(−1)|α|
ˆ

(Dαfn)ϕdx

= (−1)|α|
ˆ
fαϕdx

This shows that every Cauchy sequence of functions and all derivatives of index |α| < k converge
in Lp, which proves convergence in W k,p. For W k,p

0 , we need only check that fα is compactly
supported for all α. This is easily accomplished by replacing ϕ with φ ∈ C∞, and repeating the
calculaton.

For (ii), we first check that ⟨·, ·⟩Hk is an inner product. Letting a, b ∈ C, and f, g, h ∈ Hk,
we have

⟨af + bg, h⟩Hk =
∑

α:|α|≤k

⟨Dα(af + bg), Dαh⟩L2

=
∑

α:|α|≤k

a⟨Dαf,Dαh⟩L2 + b⟨Dαg,Dαh⟩L2

= a⟨f, h⟩Hk + b⟨g, h⟩Hk
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That ⟨y, x⟩Hk = ⟨x, y⟩Hk follows from the same fact for the L2 inner product, as does positivity.
Completeness follows from (i), which shows that (Hk, ⟨·, ·⟩Hk) is a Hilbert space.

For (iii), we have to use some properties of the Fourier transform proved in 222A. Let u ∈
Hk. Since u ∈ L2, wemaywrite that (̂Dαu) = ((iξ)αû). Clearly, we have that ||u||Hk ≥ C||û||L2+

|||ξ|kû||L2 , since the latter quantity contains only some of the terms present in the Hk norm.
That ||û||L2 + |||ξ|kû||L2 ≥ C||(1 + |ξ|2)k/2û||L2 follows from the Cauchy-Schwarz inequality
and because |ξ| > 0, we have (1 + |ξ|2)k/2 ≤ C(1 + |ξ|2)k/2. From this, the chain of inequalities
(choosing appropriate C so that all constant-dependent inequalities still hold) reads as

||u||Hk ≥ C
(
||û||2L2 + |||ξ|kû||2L2

)1/2
≥ C||(1 + |ξ|k)û||L2 ≥ ||(1 + |ξ|2)k/2û||L2

All that remains is to show that ||(1+|ξ|2)k/2û||L2 ≥ C||u||Hk . To see this, note that (1+|ξ|2)k/2 =∑k/2
j=0 cj |ξ|2j , pick the smallest C = cj , and doing this once more for the sum that appears,

||(1 + |ξ|2)k/2û||2L2 ≥ C||
k∑

j=0

|ξ|j û||2L2 ≥ C ′
∑

α:|α|≤k

||Dαu||2L2

Taking a square root completes the proof.

Naturally, for a vector space like W k,p(U), we ask what the dual of this space is. By an appropriate
definition, we can characterize the dual as being a Sobolev space of negative order.

Definition 3. For k ∈ Z≥0, 1 < p <∞, and U and open subset of Rd, we define

||u||W−k,p(U) = inf

 ∑
α:|α|<k

||gα||Lp(U) : u =
∑

α:|α|<k

Dαgα


and

W−k,p(U) =

u ∈ D′(U) : u =
∑

α:|α|<k

Dαgα, gα ∈ Lp(U)


Remark. If g ∈ Lp(U), then Dxig ∈ W−1,p(U). If g ∈ W k,p(U), then Dxig ∈ W k−1,p(U). In essence,
we can characterizeW−k,p as the space of Lp functions weakly differentiated up to k times.

With this in mind, we are able to prove the following proposition.

Prop 1.2. For k ∈ Z≥0, 1 ≤ p ≤ ∞, and p′ such that 1
p + 1

p′ = 1,

(W k,p
0 (U))∗ ≃W−k,p′(U)

Proof. We show first that (W k,p
0 )∗ ⊇W−k,p′(U). Let v ∈W−k,p′(U), and u ∈W k,p

0 (U). By definition,
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we may write v =
∑

α:|α|<kD
αgα. Testing v against u, we find that

⟨v, u⟩ =
ˆ
U
vudx =

∑
α:|α|<k

ˆ
U
Dαgαudx =

∑
α:|α|<k

ˆ
U
(−1)αgαD

αudx

≤
∑

α:|α|<k

||gα||Lp′ ||Dαu||Lp

≤ c||v||W−k,p′ ||u||Wk,p

Here, the third equality follows by integrating by parts, using the fact that spt(u) is compact in U
to disregard boundary terms. The first inequality is a direct application of Hölder’s inequality (A.4).
The second is the definition of the Sobolev norm, aggregating the constants from each term into
c. Thus, we have shown that every v in W−k,p′(U) is a bounded linear functional on W k,p

0 , i.e. an
element of the dual space.

To show that (W k,p
0 )∗ ⊂ W−k,p′ , we apply the Hahn-Banach theorem (A.2). First, define the

bounded linear functional ℓ :W k,p
0 → R, and let u ∈ C∞

0 (U), with the end goal that ℓ(u) = ⟨v, u⟩ =∑
α:|α|<k(−1)α⟨gα, Dαu⟩. To that end, we define (where K(k) is the total number of multi-indices

up to order k):
T : C∞

0 (U) → Lp(U)K(k)

u 7→ (u,Dx1u, . . . ,Dxdu, . . .Dαu)

We have that ||T (u)|| ≤ c||u||Wk,p . Furthermore, T is injective, and an isomorphism onto its image,
i.e., (C∞

0 (U), || · ||Wk,p) ∼ (T (C∞
0 (U)), || · ||). So, we may send ℓ to ℓ̃ : T (C∞

0 (U)) → R by composing
with this isomorphism. In particular, ℓ̃(Tu) = ℓ(u) tells us that ℓ̃ is similarly bounded. Now, by the
Hahn-Banach theorem, ℓ̃ extends to the bounded linear functional ˜̃ℓ : (Lp(U))⊗K → R. By definition,
˜̃
ℓ ∈

(
(Lp(U))⊕K

)∗
= {ṽ =

∑
α:|α|<k g̃α : g̃α ∈ Lp′(U)}. So, for some ũ ∈ (Lp(U))⊕K , the pairing

with ṽ is exactly ⟨ṽ, ũ⟩ =
∑

α:|α|<k⟨gα, uα⟩, where ũα = Dαu. So,

ℓ(u) = ℓ̃(Tu) =
˜̃
ℓ(Tu) =

∑
α:|α|<k

⟨g̃α, (Tu)α⟩ =
∑

α:|α|<k

⟨g̃α, Dαu⟩

If we choose gα = (−1)|α|g̃α, we have shown the remainder of the proof.

1.2 Existence and Uniqueness Problems

The concrete objective of this section is to explore the duality relationship between the existence
and uniqueness of solutions to linear equations on Banach spaces. In particular, apriori estimates
of the dual problem prove the existence of solutions to the direct problem, and vice-versa (under
certain conditions).

Prop 1.3. Let X,Y be Banach Spaces, and let P : X → Y be a bounded linear operator. Likewise, let
P ∗ : Y ∗ → X∗ be the adjoint of P . Suppose that there exists c > 0 such that ||u||X ≤ c||Pu||Y for all
u ∈ X. Then the following hold:
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i. (Uniqueness for Pu = f) If u ∈ X, Pu = 0 ⇒ u = 0.

ii. (Existence for P ∗v = g) For all g ∈ X∗, there exists v ∈ Y ∗ such that P ∗v = g, and ||v||Y ∗ ≤
c||g||X∗ .

Proof. The proof of (i) is clear, since ||u||X ≤ 0, u = 0 since X is normed.
As for (ii), we again apply the Hahn-Banach theorem. In particular, our objective is to find v ∈ Y ∗

such that for all u ∈ X: P ∗v = g ⇔ ⟨P ∗v, u⟩ = ⟨g, u⟩ = ⟨v, Pu⟩. To that end, define ℓ : P (X) → R,
where ℓ(Pu) = ⟨g, u⟩. Since P is injective by (i), ℓ is well-defined. By definition, if ||Pu||Y ≤ 1, we
have that

|ℓ(Pu)| = |⟨g, u⟩| ≤ ||g||X∗ ||u||X ≤ c||g||X∗ ||Pu||Y ≤ c||g||X∗

So, by the Hahn-Banach theorem, there exists v ∈ Y ∗ such that ⟨v, Pu⟩ = l(Pu) = ⟨g, u⟩ for all
u ∈ X, and ||v||Y ∗ ≤ c||g||X∗ .

Definition 4. Let X be a normed vector space with member x, and let x̂ : X∗ → C denote x̂(f) =
f(x). Let X̂ = {x̂ : x ∈ X}. X is called reflexive if X̂ = X∗∗.

If we want existence for the direct problem, we take the easy way, and assume X is reflexive,
which yields Proposition 1.4. In general, X̂ ⊆ X∗∗.
Prop 1.4. Let X,Y be Banach Spaces, with X reflexive, and Let P : X → Y be a bounded linear
operator. Likewise, let P ∗ : X∗ → Y ∗ be the adjoint of P . Suppose that there exists c > 0 such tht
||v||Y ∗ ≤ c||P ∗v||X∗ . Then the following hold:

i. (Uniqueness for P ∗v = g) If v ∈ Y ∗, P ∗v = 0 ⇒ v = 0.

ii. (Existence for Pu = f) For all f ∈ Y , there exists u ∈ X such that Pu = f , and ||u||X ≤ c||f ||Y .

. Exercise.
Remark. All Sobolev SpacesW k,p

0 for 1 < p <∞ are reflexive. This will be a homework problem.
Notation. Let P : X → Y be a linear operator, and P ∗ its associated adjoint. With U ⊂ Y , and
V ⊂ X∗, we define the following sets:

U⊥ = {v ∈ Y ∗ : ⟨v, f⟩ = 0∀f ∈ U}
⊥V = {u ∈ X : ⟨g, u⟩ = 0∀g ∈ V }

Remark. range(P )⊥ = ker(P ∗), and ker(P ) =⊥ range(P ∗). As a consequence of this fact, if kerP ∗ =

{0}, then range(P )⊥ = {0} ⇔ range(P ) = Y .
It’s worth noting that in finite dimensions, range(P ) = rangeP , which provides the simpler

duality relation between uniqueness and existence of solutions for linear operators. In infinite di-
mensions, this does not always hold, which is what our boundedness estimate provides. There is no
loss of generality for deriving existence for P from the qualitative bound

||v||Y ∗ ≤ c||P ∗v||X∗ (1)
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Notation. We denote by BX = {x ∈ X : ||x||X < 1}.

Prop 1.5. Let X,Y be Banach Spaces, and P : X → Y a bounded linear operator. If P (X) = Y , then
there exists c > 0 such that (1) holds.

Proof. ||P ∗v||X∗ = supBX
|⟨P ∗v, u⟩| = supBX

|⟨v, Pu⟩|. T is a surjective linear map between Banach
spaces, and is therefore open by the Openmapping theorem (A.3). Thus,P (BX) is open and contains
0. Thus, there exists c > 0 such that P (BX) ⊇ cBY , which implies

||P ∗v||X∗ = sup
BX

|⟨P ∗v, u⟩| = sup
BX

|⟨v, Pu⟩| ≥ sup
f∈cBY

|⟨v, f⟩| = c||v||Y ∗

which completes the proof.

Example. We now examine the solvability of the equation −u′′ = f inH1
0 ((0, 1)). Note that ||u||2H1 =

||u||2L2 + ||u′||2L2 , and that (H1
0 )

∗ = H−1. Using X = H1
0 , Y = H−1, we consider P = −∂2x, and claim

that if −u′′ = f for u ∈ H1
0 , then

||u||H1 ≤ c||f ||H−1 .

The proof is an application of the energy method. A simple integration by parts yields that
ˆ

−u′′udx =

ˆ
fudx =

ˆ
(u′)2dx = ||u′||2L2

To obtain the previous inequality from what we have just derived, we use the fact that u is zero on
the boundary, and so u(x) = ´ x

0 u
′(y)dy. Using the Cauchy-Schwarz inequality,

|u(x)| ≤
ˆ 1

0
|u′(y)|dy ≤ ||u′||L2

which implies that ˆ 1

0
|u|2dy ≤ sup

[0,1)
|u|2 ≤ ||u′||2L2 ,

in turn implying that
||u||2H1 ≤ c|⟨f, u⟩| ≤ c||f ||H−1 + ||u||H1

which completes the proof after dividing out a term ||u||H1 .
From this, we can deduce from the inequality above, and Proposition 1.3 that −u′′ = 0 and

u ∈ H1
0 ⇒ u = 0. From the inequality and Proposition 1.4, we should compute P ∗, and obtain

existence for the dual problem. Explicitly, we ue the fact thatH1
0 is reflexive, and compute for u ∈ H1

0 ,
that

⟨v, Pu⟩ =
ˆ 1

0
v(−u′′)dx =

ˆ 1

0
v′u′dx =

ˆ 1

0
−v′′udx = ⟨P ∗v, u⟩

So, P ∗ = −∂2x as well, meaning the problem is entirely self-adjoint, and Y ∗ = H0 1. This gives that
∀f ∈ H−1, there exists u ∈ H1

0 such that Pu = f , by applying Proposition 1.4.
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This hints at the Poincaré inequality, which we will explore shortly.

1.3 Approximation Theorems

1.3.1 Convolution and Mollifiers

Definition 5. Let φ ∈ C∞
0 (U), with ´

U φ = 1. We define the family of functions φε(x) =
1
εd
φ
(
x
ε

).
Note that ´U φεdx = 1 for every ε.

Lemma 1.6. Let φ ∈ C∞
0 , with

´
φdx = 1, u ∈ Lp(Rd where 1 ≤ p ≤ ∞, and φε as in Definition 5.

As ε→ 0, ||φε ⋆ u− u||Lp → 0.

Before proving the lemma, we note that translations are continuous in Lp.

Lemma 1.7. lim|z|→0 ||u(x− z)− u(x)||Lp = 0 for u ∈ Lp.

. Clearly, the conditions of the dominated convergence theorem are satisfied, choosing un to
be a sequence of functions un(x) = u(x − zn), where zn → 0. It suffices to dominate un by
v(x) = |u(x)| · 1B1(x), under the assumption that zn is a sequence which is of distance at most
1 from x.

Proof. (Lemma 1.6) Consider:

φε ⋆ u− u =

ˆ
U
u(x− y)φε(y)dy − u(x)

=

ˆ
U
(u(x− y)− u(x)φε(y)dy

Therefore,

||φε ⋆ u− u||Lp =

∥∥∥∥ˆ
U
(u(x− y)− u(x)φε(y)dy

∥∥∥∥
Lp

≤
ˆ
U
||u(· − y)− u(·)||Lp |φε(y)|dy

The inequality above is a direct application of theMinkowski inequality. First, we note that spt(φε) →
{0} as ε → 0. Furthermore, by the Lp-continuity of translations, the entire integrand converges to
zero.

Definition 6. A partition of unity on an open set U ⊂ Rd is a family of functions {χα}α∈A such
that the following hold:

1. ∑α∈A χα(x) = 1 for all x ∈ U .
2. For every x ∈ U , only finitely many χα are nonzero at x.

If {Uα}α∈A is an open cover of U , {χα}α∈A is called subordinate to {Uα}α∈A if sptχα ⊆ Uα for all
α. If χα ∈ C∞

0 , then {χα}α∈A is called a smooth partition of unity.
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Lemma 1.8. Let {Uα}α∈A be an open covering of U ⊂ Rd. Then there exists a smooth partition of unity
subordinate to {Uα}α∈A.

Proof. Largely omitted. To see this, start from a continuous subordinate partition of unity, and mol-
lify it until you get a smooth partition.

1.3.2 Density Theorems

In what follows, we prove four density theorems, and an extension theorem. The goal is to provide
tools for representing members u ∈ W k,p(U) by objects with prescribed smoothness and support
properties.

Theorem 1.9. Let k ∈ Z≥0, 1 ≤ p <∞. Then

i. C∞(Rd) is dense inW k,p(Rd).

ii. C∞
0 (Rd) is dense inW k,p(Rd).

Proof. (i) is a rote application of mollifiers. (ii) will be homework. The main step is to approximate
f by fχ(1/R), with χ ∈ C∞

c , and χ(0) = 1.

Theorem 1.10. Let k ∈ Z≥0, 1 ≤ p < ∞, and U be an open set in Rd. Then C∞(U) is dense in
W k,p(U).

Proof. Let u ∈W k,p(U), and fix ϵ > 0. We want to find v ∈ C∞(U) such that ||u−v||Wk,p(U) ≤ cϵ. To
that end, consider the family of opens Uj = {x ∈ U : dist(x, ∂U) < 1

j }, and define Vj = Uj \ Uj+2.
Then, since U ⊆

⋃∞
j=1 Vj , we may choose χj to be a partition of unity of U subordinate to Vj , and

write
u =

∞∑
j=1

uχj :=
∞∑
j=1

uj

Note that because sptχj ⊆ Vj , sptuj ⊆ Vj , Furthermore, uj ∈ C∞
0 (Rd), since it is smoothly extended

by 0 outside Vj .
Now, we define a mollifier φ ∈ C∞

0 (Rd), with the usual ´ φdx = 1, and sptφ ⊆ B1(0). This
automatically gives us that sptφεj ⊆ Bϵj (0), for prescribed εj . We prescribe εj by defining a new
vj = φεj ∗ uj , and choosing each εj so that ||uj − vj ||Wk,p(U) ≤ 2−jϵ, and spt vj ⊆ Ṽj = Uj−1 \Uj+2.
With these prescribed, we take v =

∑∞
j=1 vj . First, v is well-defined since Ṽj is locally finite. Second,

we compute
||v − u||Wk,p(U) ≤

∞∑
j=1

||vj − uj ||Wk,p(U) ≤ 2−jϵ = cϵ

So, v has the desired convergence and smoothness properties, so we are done.

10



Br′0

Br0

U

sptusptwη

∂U

(a) Illustration of Step 2.

Uj>0 U0

(b) Open Cover of U

Figure 2: Illustration of the proof of Theorem 1.11

U1

U3

V1

Figure 1: Uj and Vj in the
proof of Theorem 1.10

.

One issue with Theorem 1.10 is its lack of control over v near the
boundary of U . We attempt to resolve this in the following theorem,
but first, we define some terms.

Notation. C∞(U) = {u : U → R : u is the restriction of a function
ũ ∈ C∞(Ũ), Ũ ⊇ U}.

Definition 7. We say that ∂U is of class Ck if it is locally the graph
of a Ck function.

Theorem 1.11. Let k ∈ Z≥0, 1 ≤ p ≤ ∞, and U a bounded open
subset in Rd, with ∂U of class C1.2 Then C∞(U) is dense inW k,p(U).

Proof. The proof proceeds in two steps. The first is to reduce the
problem for a general U to a region where we may consider U to be
the graph of aC1 function. The second is to apply our approximation
theorems to these simpler regions, before stitching the function back together.

By the definition of C1-regularity, and the fact that U is bounded, we may cover ∂U by a finite
family of open balls {Brj (xj)}Jj=1, in each of which U may by represented as the region above a C1

graph. Calling Uj = Brj (xj), we choose an open set U0 such that U ⊇ U0 ⊇ U \
⋃J

j=1 Uj . Then
{Uj}Jj=0 is an open cover of U (which is illustrated in Figure 2b), so we may take {χj}Jj=0 to be a
partition of unity subordinate to Uj , and–as in the proof of Theorem 1.10–write:

u =
J∑

j=0

uχj := u0 +
J∑

j=1

uj

u0 already has compact support, so we are free to apply the previous results. For uj>0, we need to
give a more explicit description of the boundary.

2This can be relaxed to give U a Lipschitz boundary.
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For this portion, we fix u = uj , and make a change of coordinates so that we are centered at the
origin, with r0 and r′0 defined appropriately as in Figure 2a. We note that ∂U = {xd = Γ(x1, . . . xd−1}
possibly after a change of coordinates, where Γ is the Ck graph function. Letting ed represent the
unit coordinate vector in the direction of xd, we make an approximation in two parts. First, define
wη(x) = u(x+ ηed). Note that as η → 0, by Lemma 1.7, ||u− wη||Wk,p(U∩Br0 )

< 1
2ϵ Moreover, wη is

defined on the set Br′0
∩ U − ηed. Second, we choose v = φr′0

∗ wη, where φ is a mollifier. Then, for
r′0 ≪ η, v is well-defined on Br′0

∩ {xd > Γ(x1, . . . , xd−1)}, and ||v − wη||Wk,p(U∩Br0 )
< 1

2ϵ. So, an
application of the triangle rule gives that

||u− v||Wk,p(U) ≤
1

2
ϵ+

1

2
ϵ ≤ ϵ

And, since v ∈ C∞(V ∩ {xd > Γ(x1, . . . , xd)}), we are done.

1.3.3 Trace and Extension Theorems

Extension theorems can be roughly thought of as tools allowing us to handle u ∈ W k,p(U) when U
is a bounded domain.

Theorem 1.12. Let k ∈ Z≥0, 1 ≤ p <∞, U a bounded domain in Rd with Ck boundary, and V be an
open set containing U . Then there exists E :W k,p(U) →W k,p(Rd) such that the following hold:

i. (Extension property) Eu|U = u.

ii. (Linearity and Boundedness) E is linear, and ||Eu||Wk,p(Rd) ≤ c||u||Wk,p(U).

iii. (Support) spt(Eu) ⊆ V .

Proof. Observe that by Theorem 1.11, and the fact that U is bounded, it suffices to consider u ∈
C∞(U). The proof proceeds in two steps. First, we reduce to the half-ball case, and second, we
prove extension for the half-ball case.

To reduce our problem to the case of the half-ball, it suffices to construct an open cover {U0, . . . , UJ}
as in the proof of Theorem 1.11, with similarly constructed partition of unity {χj}Jj=0, and uj := uχj .
Notably, u0 ∈ W k,p(Rd) since it is smoothly extended by 0, and uk ∈ C∞(U), and sptuk ⊆ Uk ∩ U .
After making a change of coordinates to yj = xj for 1 ≤ j < d, and yd = xd − Γ(x1, . . . , xd−1),
we see that Uk ∩ U 7→ {y ∈ Br̃(0) : y

d > 0} := Ũk, and x 7→ y is Ck, with smooth Uj . Therefore,
applying the chain rule, we find that uj(y) = uj(x(y)) satisfies

||uj(y)||Wk,p
y (Ũj)

≤ c||uk(x)||Wk,p
x (Uj∩U)

Thus, it suffices to consider the half-ball case.
The second step is to actually extend u in the case of the half-ball. Here, we define U = B+

r (0),
and W = B+

r/2(0), such that sptu ⊂ W . In order to extend u, we use the higher order reflection

12



method, defining:

Eu = ũ =

{
u(x) xd > 0∑k

j=0 αju(x
1, . . . , xd−1,−βjxd) xd < 0

Our objective here is tomatch up the normal derivatives of ũwith u up to order k, i.e. set u(x1, . . . , xd−1, 0+) =∑k
j=0 αju(x

1, . . . , xd−1, 0−), and likewise for all derivatives ∂j
xdu = (−βj)j∂xdu. This sets up the fol-

lowing matrix equation for our coefficients α and β.
1
...
...
1

 =


1 · · · 1

−β1 · · · −β1
... ... ...

(−βk)k · · · (−βk)k



α0

...

...
αk


This is the Vandermondematrix, and if all βj ’s are distinct, the matrix is invertible, which implies that
the existence of α1, . . . , αk such that the equation holds. The existence of such coefficients defines
ũ on Br(0), extending u and matching up derivatives to order Ck. Finally, to ensure extension to
all of Rd, we apply a cutoff function (a lá Urysohn’s lemma) χV , such that χV = 1 on U , and
sptχV ⊂ V .

UW

sptu

Figure 3: Illustration of the
proof of Theorem 1.12.

Now, we move on to discussing trace theorems, which essentially
revolve around the restriction of functions u ∈W 1,p(U) to ∂U . This
is interesting in part because the measure of µ(∂U) = 0, so using
only Lp theory to deal with differentiability on the boundary gives
little help, since Lp equivalence is almost everywhere.

Definition 8. Let u ∈ C1(U), and let U be a domain with C1

boundary. Then the trace of u on the boundary of U is defined
tr∂U (u) = u|∂U .

Our objective is to first extend this definition to all of W 1,p(U).
We note that tr∂U is clearly linear, and will often write trwhen ∂U is
clear from context. Furthermore, whenever the Lp norm is used on a manifold of dimension less than
the ambient space, it is assumed that integration is with respect to the volume fold of the manifold.

Theorem 1.13 (Nonsharp Trace Theorem). Let U be a bounded, open subset of Rd, with ∂U of class
C1, and 1 < p <∞. Then for u ∈ C1(U),

|| tr∂U u||Lp(∂U) ≲ ||u||W 1,p(U)

As a consequence of this inequality, the following facts hold:

i. tr∂U is extended uniquely by continuity and density of C1(U) ⊆ W 1,p(U) to tr∂U : W 1,p(U) →
Lp(∂U)

13



ii. u ∈W 1,p
0 ⇔ tr∂U u = 0.

Proof. Evans section 5.5.

Note that this extension is not surjective. img(tr) ⊊ Lp(∂U).
We direct our attention to a sharp version of Theorem 1.13 in the setting where p = 2. This

opens up the world of Fourier analysis, and eventually leads to the world of fractional-order Sobolev
Spaces. We prove a Sharp Trace theorem for the half-space Rd

+ = {x ∈ Rd : xd > 0}, and denote
∂U = {(x′, 0) ∈ Rd} ≃ Rd−1.

Notation (Fourier Transform). The convention used for the Fourier and Inverse Fourier transforms
is as follows: û =

´
u(x)e−ixξdx, and u(x) = ´

ûeiξx dξ
2π .

Theorem 1.14 (Sharp Trace Theorem). When u ∈ C1(Rd
+) ∩H1(Rd

+), we have:

|| tru||H1/2(Rd−1) ≲ ||u||H1(Rd
+)

Proof. Let u be as in the Theorem statement. Using Theorem 1.12, we may extend u to ũ ∈ C1(Rd)

such that ||ũ||H1(Rd) ≲ ||u||Rd
+
. Then, we may write

tru = u(x′, 0) = ũ(x′, 0) =

ˆ
[Fxd ũ](x′, ξd)

dξd

2π

Furthermore,
[Fx′ tru](ξ′) =

ˆ
[F ũ](ξ′, ξd)dξ

d

2π
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Using the Fourier characterization from Proposition 1.1, we may write

|| tru||Hs ≃ ||(1 + |ξ′|2)s/2[Fx′ tru](ξ′)||L2
ξ′

=

∥∥∥∥(1 + |ξ′|2)s/2
ˆ

[F ũ](ξ′, ξd)dξ
d

2π

∥∥∥∥
L2
ξ′

≃
∥∥∥∥ˆ [F ũ](ξ′, ξd)(1 + |ξ′|2)s/2dξd

∥∥∥∥
L2
ξ′

=

∥∥∥∥∥∥∥
∥∥∥∥∥[F ũ](ξ′, ξd)(1 + |ξ′|d)s/2 (1 + |ξ′|2 + |ξd|2)1/2

(1 + |ξ′|2 + |ξd|2)1/2

∥∥∥∥∥
L1
ξd

∥∥∥∥∥∥∥
L2
ξ′

≤

∥∥∥∥∥∥∥
∥∥∥∥∥(1 + |ξ′|2)s/2

(1 + |ξ|2)1/2

∥∥∥∥∥
L2
ξd

∥∥∥(1 + |ξ|2)1/2[F ũ]
∥∥∥
L2
ξd

∥∥∥∥∥∥∥
=

∥∥∥∥∥
(ˆ

(1 + |ξ′|2)s

1 + |ξ′|2 + |ξd|2
dξd
)1/2

||(1 + |ξ|2)1/2[F ũ]||L2
ξd

∥∥∥∥∥
L2
ξ′

≤

(
sup

ξ′∈Rd−1,s∈R

[ˆ
(1 + |ξ′|2)s

1 + |ξ′|2 + |ξd|2
dξd
])

||u||H1(Rd
+)

≃ ||u||H1(Rd
+)

Theorem 1.15 (Extension from the Boundary). There exists a bounded linearmap ext∂U : H1/2(Rd−1) →
H1(Rd

+) such that tr∂U ◦ ext∂U = id.

Proof. Here, we use the Poisson Semigroup. In particular, define g ∈ S(Rd−1), and u = ext∂U (g),
with [Fx′u](ξ′, xd) = η(xd)e−xd|ξ′|ĝ(ξ′). Here, η is a smooth cutoff function with η(|s| < 1) = 1, and
η(|s| > 2) = 0. Our objective is that show that u ∈ H1(Rd

+) if and only if the following statements
hold:

i. u, ∂x1u, . . . , ∂xd−1 ∈ L2.
ii. ∂xdu ∈ L2.
For (i), assume that u ∈ H1(Rd

+). Then

||u||2L2 + ||∂x1u||2L2 + . . .+ ||∂xd−1u||2L2 ≃ ||(1 + |ξ′|)2)1/2[Fx′u](ξ′, xd)||2L2
ξ′L

2
xd

= ||(1 + |ξ′|2)1/2η(xd)e−xd|ξ′|ĝ(ξ′)||2L2
ξ′ ,L

2
xd

=
∥∥∥(1 + |ξ′|2)1/4||η(xd)e−xd|ξ′|||L2

xd
(1 + |ξ′|2)1/4ĝ(ξ′)

∥∥∥2
L2
ξ′

We want to put a uniform bound on (1 + |ξ′|2)1/4||η(xd)e−xd|ξ′|||L2
xd

for every ξ′. By the compact
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support of η, we have the trival inequality:

||η(xd)e−xd ||2L2
xd

≲ 1

Furthermore, writing out the L2-norm, and making a substitution of variables inside the integral,
we arrive at the substitution inequality:

ˆ
(η(xd))2e−2xd|ξ′|dxd ≲

1

|ξ′|

From these two inequalities, we deduce that

||η(xd)e−xd|ξ′|||L2
xd

≲ min{1, |ξ′|−1/2} ≲ (1 + |ξ′|)−1/2

So, terms in our initial equality cancel as follows:∥∥∥�������
(1 + |ξ′|2)1/4

���������
||η(xd)e−xd|ξ′|||L2

xd
�������
(1 + |ξ′|2)1/4ĝ(ξ′)

∥∥∥2
L2
ξ′
≃ ||ĝ(ξ′)||L2

ξ′

This proves (i), since we may unravel the chain of definitions in the reverse direction exactly the
same way.

To see (ii), write ∂xdu = ∂xd(η(xd)v) = η′(xd)v + ηv′, Fx′v = e−xd|ξ′|ĝ(ξ). Each term of u′ may
be bounded, with η′(xd)v ≤ ||v||L2(xd∈spt η), and

||η∂xdv||L2
x′L

2
xd

= ||η∂xd(e−xd|ξ′|ĝ(ξ′))||L2
xd

L2
ξ′
= ||η(xd)|ξ′|e−xd|ξ′|ĝ(ξ′)|| ≲ c||g||H1/2

The final inequality here follows from (i).

To generalize the above theorems to L2-based Sobolev spaces, we need fractional Sobolev spaces
on a C1 boundary, under C1 straightening diffeomorphism to the half-space. The indepedence of
the norm under this diffeomorphism follows from some concepts in interpolation theory, which is in
a book of Stein from 1970.

For p ̸= 2, img(tr∂U W
1,p(U)) = B

1−1/p,p
p (∂U), the Lp-Besov space with regularity index of order

1− 1/p, and summability index p. This is also in Stein.

1.4 Sobolev Inequalities

1.4.1 1 ≤ p < d

In a nutshell, Sobolev inequalities are quantitative generalizations of the Fundamental theorem of
Calculus, allowing us to control the size of a function by the growth of it’s derivative.

Theorem 1.16 (Gagliardo-Nirenberg-Sobolev Inequality). For d ≥ 2, u ∈ C∞
0 (Rd), we have that for
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a constant cd which depends only on the dimension d:

||u||
L

d
d−1 (Rd)

≤ cd||Du||L1(Rd)

Remark. The factor of d
d−1 can be derived using dimensional analysis. It’s basically a statement about

the fact derivatives have dimensions [D] ∼ 1
λ , where λ is the scalaing factor, and that the Lp norm

has dimension [|| · ||Lp ] ∼ [λ]d/p. So [||D · ||Lp ] ∼ [λ]d−1, and the rest follows from equating the
dimensions.3

The key ingredient in the proof of Theorem 1.16 is actually another inequality.

Lemma 1.17 (Loomis-Whitney Inequality). For d ≥ 2, j = 1, . . . , d, and fj = fj(x
1, . . . , x̂j , . . . , xd),

we have:

∥
d∏

j=1

fj∥L1(Rd) ≤
d∏

j=1

||fj ||Ld−1(Rd−1)

Proof. The proof of Lemma 1.17 is pretty direct, we just integrate in each direction, applying Hölder’s
inequality as we go.

ˆ
|

d∏
j=1

fj |dx1 = |f1|
ˆ d∏

j ̸=1

|fjdx1 ≤ |f1|
d∏

j ̸=1

||fj ||Ld−1

x1

Doing this d times gives
ˆ

· · ·
ˆ

|
d∏

j=1

fj |dx1 · · · dxd ≤
d∏

j=1

||fj ||Ld−1

x1,...,x̂j ,...,x
d

Remark. The Loomis-Whitney inequality also has a fun geometric interpretation. Specifically, take
E ⊆ Rd, and πj(E) = {x ∈ Rd : xj = 0 and ∃xj′ s.t. (x1, . . . , xj′, . . . , xd) ∈ E}. The Loomis-Whitney
inequality gives us a bound on the measure µ(E) by the coordinate measures of πj(E). To see this,
we take 1U to be the indicator function of U , and write

µ(E) =

ˆ
Rd

1Edµ ≤
ˆ
Rd−1

d∏
j=1

1πj(E)(x
1, . . . , x̂j , . . . , xd)dµ ≤

d∏
j=1

µ(πj(E))1/(d−1)

With the Loomis-Whitney inequality (1.17) in mind, we are now ready to prove the Gagliardo-
Nirenberg-Sobolev inequality (1.16)!

Proof. (of Theorem 1.16). The first step is to pick x ∈ Rd, and write u(x) as the indefinite integral
3I absolutely did not expect to see dimensional analysis show up anywhere near graduate mathematics, and am equal

parts happy and confused.
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along a coordinate direction

u(x) =

ˆ xj

−∞
∂yju(x

1, . . . , y, . . . , xd)dy

Since we are free to choose j, we can bound |u| by it’s gradient, and define f̃j as being equal to the
rightmost term on the inequality:

|u(x)| ≤
ˆ xj

−∞
|Du(x1, . . . , y, . . . , xd)|dy ≤

ˆ ∞

−∞
|Du(x1, . . . , y, . . . , xd)dy := f̃j

Thus, we have that |u(x)| ≤
(∏d

j=1 f̃j

)1/d
, and after exponentiating, |u(x)|d/(d−1) ≤

∏d
j=1 f̃

1/(d−1)
j .

Now, we apply the Loomis-Whitney inequality, setting fj = f̃
1/(d−1)
j to obtain:

||u||
d

d−1

L
d

d−1

≤
ˆ

|u|
d

d−1 ≤
ˆ d∏

j=1

fd−1
j dx ≤

d∏
j=1

||fj ||Ld−1 =
d∏

j=1

(ˆ
|fj |d−1dx1 · · · d̂xj · · · dxd

) 1
d−1

=
d∏

j=1

(ˆ [ˆ
|Du|dxj

]
dx1 · · · d̂xj · · · dxd

) 1
d−1

≤ ||Du||
d

d−1

L1

Cancelling exponents on all terms completes the proof.

Remark. This is a functional version of the Isoperimetric Inequality. One can see this by approximat-
ing u as the indicator function of some set.

Another natural question to ask is what happens when varying p on the RHS of Theorem 1.16?
This should net an inequaltiy of the form ||u||Lq ≤ ||Du||Lp . Of course, both terms should have the
same dimensionality, so we have an equation of the form [x]d/q ∼ [x−1+d/p], yielding that q = dp

d−p .
Stated formally, we have the following theorem:

Theorem 1.18 (Sobolev Inequality for Lp-based spaces). For d ≥ 2, 1 ≤ p < d, and u ∈ C∞
0 (Rd),

the following inequality holds:
||u||

L
dp
d−p (Rd)

≤ ||Du||Lp(Rd) (2)

Proof. Define q = dp
d−p , q̃ = q d−1

d , and v = |u|q̃. The proof uses the following ‘napkin-math’ calcula-
tion: |Dv| = q̃|u|q̃−1|Du|. This can be justified by using the approximation |x| = limϵ→0+(ϵ

2+x2)1/2,
and applying the Dominated Convergence Theorem to integrals where it appears. Then, we may
apply Theorem 1.16 to obtain the following inequality:

ˆ
|u|qdx =

ˆ
|v|

d
d−1 ≤

[ˆ
|Dv|dx

] d−1
d

=

[ˆ
q̃|u|q̃−1|Du|dx

] d−1
d
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Now, we apply Hölder’s inequality to put |Du| in Lp. A simple dimensional analysis argument gives
that the following inequality is the only option

[ˆ
q̃|u|q̃−1|Du|dx

] d−1
d

≤ ||u||
d−1
d

(q−1)

Lq ||Du||
d−1
d

Lp

Canceling exponents and dividing factors of u completes the proof.

The theorems proven above are only for a dense subset of general sobolev spaces. However, they
extend naturally to the whole space after an applying our density and extension theorems.We collect
those results here:

Theorem 1.19. Let d ≥ 2, 1 ≤ p < d, and U be a bounded domain in Rd. Then the following hold:

i. If u ∈W 1,p(Rd) then Equation 2 holds.

ii. If u ∈W 1,p
0 (U), then Equation 2 holds.

iii. If u ∈W 1,p
0 (U), and ∂U is C1, then

||u||
L

dp
d−p (U)

≤ c||u||W 1,p(U)

Proof. Statements (i) and (ii) follow from an application of the density theorems of the previous
section. Statement (iii) requires density and extension.

Remark. Statement (ii) is sometimes called a Poincaré-type inequality. For statement (iii), we need
the fullW 1,p norm in order to apply the extension procedure. The other two statements come with
their own built-in control of the boundary.

1.4.2 p ≥ d

For completeness, we should consider the case where p ≥ d. As it turns out, we actually need a
different method of relating u to Du, which involves an averaging procedure over bounded balls.
We collect this result in the following lemma.

Lemma 1.20. Let u ∈ C∞(Rd). Then

1

|Br|

ˆ
Br(x)

|u(x)− u(y)|dy ≲
ˆ
Br(x)

|Du|
|x− y|d−1

dy

Proof. We begin by noting that

|u(x)− u(y)| =
ˆ 1

0
| d
ds
u(x+ s(y − x))|ds
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Then, we take an average over a ball

1

|Br|

ˆ
Br(x)

|u(x)− u(y)|dy ≤ 1

|Br|

ˆ
Br(x)

ˆ 1

0
| d
ds
u(x+ s(y − x))|dsdy

Taking the integrand out of the right hand side, we have ∂su(x+s(y−x)) = (y−x)·Du(x+s(y−x)),
which allows us to rewrite the previous inequality as

1

|Br|

ˆ
Br(x)

|u(x)− u(y)|dy ≤ c

rd

ˆ
Br(x)

ˆ 1

0
|x− y||Du(x+ s(y − x))|dsdy

Using the polar integration formula, with ρω = y − x, ρ = |y − x|, we find

=
c

rd

ˆ r

0

ˆ
Sd−1

ˆ 1

0
ρ|Du(x+ sρω)|dsρd−1dωdρ

Changing variables to t = sρ, we find
ˆ r

0
ρd|Du(x+ sρω)dρ =

ˆ sr

0

1

s

td

sd
|Du(x+ tω)|dt

So, we can compute
ˆ 1

0

ˆ sr

0

1

s

td

sd
|Du(x+ tω)|dtds =

ˆ r

0

ˆ 1

t/r

1

sd+1
td|Du(x+ tω)|dsdt ≤ c

ˆ r

0
rd|Du(x+ tω)|dt

Then, the entire inequality is bounded by

1

|Br|

ˆ
Br(x)

|u(x)− u(y)|dy ≤ c
1

��rd

ˆ
Sd−1

ˆ r

0
��r
d|Du(x+ tω)|dtdω

= c

ˆ
Sd−1

ˆ r

0

1

td−1
|Du(x+ tω)|td−1dtdω

= c

ˆ
Br(x)

|Du|
|x− y|d−1

dy

With this result, we may proceed to the case where p > d.

Theorem 1.21. Let d ≥ 2, u ∈ C∞(Rd), p > d, and set α = 1− d
p . Then

|u(x)− u(y)| ≤ c|x− y|α||Du||Lp(Rd)

Proof. Using the previous lemma, take averages
 
Br(x)

|u(x)− u(z)|dz ≤ c

ˆ
Br

|Du|
|x− z|d−1

dz

20



Now, choose U to such that it is contained in both Br(x) and Br(y), and compute:
 
U
|u(x)− u(y)|dz ≤

 
U
|u(x)− u(z)|dz +

 
U
|u(y)− u(z)|dz

Note that because of the way we chose U , we also have the inequality
 
U
|u(x)− u(z)|dz ≤ |Br(x)|

|U |

 
Br(x)

|u(x)− u(z)|dz

≤ c

ˆ
Br(x)

|Du|
|x− z|d−1

dz

≤ c||Du||Lp(Br(x))

∥∥∥∥ 1

|x− z|d−1

∥∥∥∥
L

p
p−1 (Br(x))

≤ c̃||Du||Lp

The final inequality follows from the fact that ||1/|x − z|d−1||
L

p
p−1

∼ rα, which we can assimilate
into the constant c.

Now, we want to define Hölder continuous spaces, which will allow us to deal more concretely
and precisely with L∞ cases.

Definition 9 (Hölder Seminorm). Let u ∈ C(U), where U is (typically) a bounded domain. Then
the Hölder Seminorm is defined

[u]Cα(U) = sup
x ̸=y

|u(x)− u(y)|
|x− y|α

To make the Hölder Seminorm into a norm, we have to deal with the fact that [·]Cα is invariant
under the addition of a constant. To that end, we use the sup norm.

Definition 10 (Hölder Norm). Let u ∈ C(U), where U is (typically) a bounded domain. Then the
Hölder Norm is defined

||u||Cα(U) = [u]Cα(U) + ||u||L∞(U)

As one might expect, Hölder Space is defined as

Cα(U) = {u ∈ C(U) : ||u||Cα(U) <∞}

Theorem 1.22 (Morrey’s Inequality). Let d ≥ 2, p > d, U ⊆ Rd bounded, and ∂U be C1. Then the
following hold:

i. u ∈W 1,p(U) ⇒ u ∈ Cα(U) with α = 1− p
d .

ii. ||u||Cα(U) ≤ c||u||W 1,p(U).

Proof. By extension and density, it suffices to check the case u ∈ C∞
0 (Rd), sptu ⊆ V ,where V

is a fixed (independent of u) bounded open set fully containing U . By Theorem 1.21 [u]Cα(V ) ≲
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c||u||W 1,p(V ), since the W 1,p(U) norm contains the || · ||Lp term appearing in the inequality. So, it
remains only to show that ||u||L∞(V ) ≲ ||u||W 1,p(V ).

To that end, fix x ∈ sptu, and approximate u(x) by an average over Br(x)∣∣∣∣∣
 
Br(x)

u(x)dz −
 
Br(x)

u(z)dz

∣∣∣∣∣ ≤
 
Br(x)

|u(x)− u(z)|dz ≤
 
Br(x)

|Du(z)|
|x− z|α

dz ≤ rα||Du||Lp(Br(x))

Now, take r = 1. Then,

|u(x)| ≤ c

∣∣∣∣∣
ˆ
B1(x)

udz

∣∣∣∣∣+ c||Du||Lp(B1(x)) ≤ c(||u||Lp + ||Du||Lp)

And, in the above chain of inequalities, the final one follows from the fact that c| ´B1(x)
udz| ≤

||u||L1 ≤ c||u||Lp , where c = ||1||Lp′ .

In the case where d = p, W 1,p does not embed into L∞. The standard counterexample to see
this is U = B1(0) ⊂ R2, u(x) = ln

(
ln
(
10 + |x|−1

)). A useful substitute for the Hölder norm is the
Bounded Mean Oscillation seminorm.

Definition 11 (BoundedMean Oscillation). Let u ∈ L1
loc(U). The BoundedMean Oscillation Semi-

norm is defined as
[u]BMO = sup

r,x0

{ 
Br(x0)

∣∣∣∣∣u(z)−
 
Br(x0)

u(y)dy

∣∣∣∣∣ dz
}

Worth noting is that the previous theorem’s proof uses the fact that Hölder spaces are complete,
which is left as an excercise for a real analysis class. It’s left as an excercise to check that L∞ ⊊ BMO.
e.g. one can use u = ln(x) on the unit ball. Then, we have the following theorem.

Theorem 1.23. Let u ∈W 1,d(Rd). Then [u]BMO <∞, and

[u]BMO ≤ c||Du||Ld

Proof. Let u ∈ C∞(Rd), and fix Br(x). Then we want to show that we can find a c independent of
Br(x) and u such that the inequality above holds. So, we write

 
Br(x)

∣∣∣∣∣
 
Br(x)

u(z)dy −
 
u(y)dy

∣∣∣∣∣ dz ≤ 1

|Br|2

ˆ
Br(x)

ˆ
Br(x)

|u(z)− u(y)|dydz

≤ 1

|Br|2

ˆ
Br(x)

ˆ
B2r(x)

|u(z)− u(y)|dydz

≤ 1

|Br|2

ˆ B2r(x)

Br(x)

|Du(x)|
|z − y|d−1

dydz

We will define F (y) = ´
B2r(x)

|Du(z)|
|z−y|d−1 , and apply the Hardy-Littlewood Maximal Theorem, withMu
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denoting the Hardy-Littlewood Maximal Function.4 To find a maximal function which controls F (y),
we will use a dyadic decomposition. Specifically, |y|α has the property that if 2k−1 ≤ |y|, |y′| ≤ 2k,
then |y| ≃ |y′| ≃ 2kα. We also define the balls Ak = {2k−1 ≤ |z − y| ≤ 2k}. Using our new
decomposition, we write

ˆ
B2r(y)

|Du|
|z − y|d−1

dz ≤
∑
2k≤2r

ˆ
Ak

1

(2k)d−1
|Du(z)|dz

≤
∑
2k≤2r

1

(2k)d−1

ˆ
B

2k
(y)

|Du|dz

≤ c
∑

2k≤2r+c

2k[M|Du|](y)

Then, we take an L1 norm, and apply Hölder. The sum drops out since it’s geometric and of size r,
we assimilate it into the constant c.

||c
∑

2k≤2r+c

2k[M|Du|](y)||L1 ≤ cr||M|Du|||L1

≤ cr||M|Du|||Ld(Br(x))||1||L d
d−1 (Br(x))

≤ cr||M|Du|||Ld(Br(x))r
d−1

≤ crd||Du||Ld

The final inequality is an application of Hardy-Littlewood. When we move crd over to the left-hand
side of the inequality, we get the desired result, since it satisfies the averaging condition laid out in
the theorem statement.

1.5 Compactness Theorems

Definition 12 (Compact Operator). Let T : X → Y be a bounded, linear operator between normed
spaces X,Y . T is called a compact operator if either of the equivalent statements are true.

• T (BX) is compact in Y .
• For all bounded sequences {xn} ⊂ X, {T (xn)} has a convergent subsequence in Y .

Definition 13. Suppose i : X ↪→ Y is linear (↪→ denotes that i is an embedding). Then X ⊆ Y has
a natural identification and is compact if i is compact.

These are the definitions involved in the natural setting of compactness, where we want to ex-
amine for which values of q, p W 1,p(U) ⊆ Lq(U). The basic compactness theorem from functional
analysis is the Arzelá-Ascoli theorem, which we recall below.

4One might be tempted to apply Young’s Inequality here, since F is clearly a convolution. This will fail, however, since
1

|z−y|d−1 /∈ Lq for the q we will need from dimensional analysis.
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Theorem 1.24 (Arzelà-Ascoli). Let K be a compact Hausdorff space, and F ⊆ C(K), where C(K) is
equipped with the uniform topology. Then F is compact if and only if the following hold

• (Local Boundedness) For all x ∈ K, there existsMx such that for all f ∈ F , |f(x)| ≤Mx.
• (Equicontinuity) For all ϵ > 0, there exists δ > 0 such that for all f ∈ F , |f(x) − f(y)| < ϵ if

|x− y| < δ.

Theorem 1.25 (Compactness of C0,α(U) ⊆ C0,α′
(U)). Let U ⊂ Rd be a bounded, open set, and let

0 < α′ < α < 1. Then C0,α(U) ⊂ C0,α′
(U) is compact.

A sketch of the proof was given in lecture. I will fill in details.
. The basic steps are (i) note that by a direct application of Arzelà-Ascoli, C0,α(U) ⊆ C(U) is
compact. (ii) Show that bounded sequences in the Holder space have convergent subsequences
in C(U). (iii) show that ||unj − u∞||C0,α′ → 0 using interpolation. The L∞ part goes to 0 by
convergence in C0. The Holder seminorm part uses the following inequality

[v]C0,α′ ≤ c||v||1−
α′
α

L∞ [v]
α/α
C0,α

The exponents are derived from a homogeneity argument.

Theorem 1.26 (Rellich-Kondrachov). Let d ≥ 2, U ⊆ Rd≥2 be bounded and open, with ∂U ∈ C1. Let
1 ≤ p < d, and 1 ≤ q < d

d
p
−1

. ThenW 1,p ↪→ Lp is compact.

The proof of Theorem 1.26 relies on the following lemma regarding the convergence of mollifiers.

Lemma 1.27 (Accelerated Convergence of Mollifiers). Suppose v ∈ W k,p, 1 ≤ p < ∞, and φ ∈
C∞
0 (Rd) is a mollifier satisfying an additional moment condition:

´
xαφdx = 0 for all 1 ≤ |α| < k.

Then
||φϵ ∗ v − v||Lp ≤ cϵk||v||Wk,p

Proof. We should take the Taylor expansion (using αk to denote all multi-indices of degree k)

v(x− y)− v(x) =

k−1∑
n=1

1

n!
yαnDαnv(x) +

1

k!

ˆ 1

0
(1− s)k∂sv(x− sy)ds
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and put it into our convolution
ˆ
φϵ(y)(v(x− y)− v(x))dy =

ˆ
φϵ

(
k−1∑
n=1

1

n!
yαnDαnv(x) +

1

k!

ˆ 1

0
(1− s)k∂sv(x− sy)ds

)
dy

=

k−1∑
n=1

1

n!
Dαnv(x)

��������:0ˆ
φϵ(y)y

αndy +
1

k!

ˆ ˆ 1

0
φϵ(y)(1− s)k∂sv(x− sy)dsdy

=
1

k!

ˆ ˆ 1

0
φϵ(y)(1− s)k∂sv(x− sy)dsdy

≃
ˆ
φϵ(y)

ˆ 1

0
∂k+1
s v(x− sy)dsdy

≃
ˆ
φϵ(y)y

αk+1

ˆ 1

0
D

αk+1
y v(x− sy)dsdy

Now, we consider |y| ≲ ϵ on the support of the integral, and note that the convolution can be bounded
in Lp by taking the Lp norm of both sides, and applying an inequality. The proof of this went a bit
fast in lecture, and I’m not sure I understand it.

Using the above lemma, we are ready to prove Rellich-Kondrachov.

Proof of 1.26. First, we reduce to the case W 1,p ↪→ Lp. There are two subcases. The first is when
1 ≤ q ≤ p. Since U is bounded, ||v||Lq(U) ≤ |U |

1
q
− 1

p ||v||Lp(Rd) by Hölder’s inequality. The second
is p < q < p∗. In this case ||v||Lq(U) ≤ ||v||θLp(U)||v||

1−θ
Lp∗ (U)

, where by dimensional analysis, θ must
satisfy d

q = d
pθ +

d
p∗ (1 − θ). Then by the previous analysis, θ < p, so ||v||θLp → 0, and the bound on

||v||Lp∗ is given by the sobolev inequalities shown previously.
Now, it suffices to consider the case q = p and apply the previous lemma in leiu of equicontinuity.

Given {un} ⊂W 1,p and bounded by some realM , we can, by the extension theorem, find a sequence
{ũn} extending un defined on the whole space, with spt ũn ⊆ V , where V is a bounded open set
containing U . Furthermore, we have the bound

||ũn||W 1,p(Rd) ≤ c||un||W 1,p(U) ≤ cM

Now, introduce the mollifier
ũn =����:vn,ϵ

φϵ ∗ ũn +
��������:en,ϵ
(ũn − φϵ ∗ ũn)

vn,ϵ is smooth, and higher-regularity norms are bounded. By the lemma, the error term uniformly
converges: ||en,ϵ||Lp(Rd) ≤ cϵM . Furthermore, applying Hölder yields that

||vn,ϵ||L∞ + ||∇vn,ϵ||L∞ ≤ cϵM

So, by Arzelá-Ascoli, for each ℓ, there exists a subsequence ũnℓ
such that ||enℓ,ϵ||L∞ ≤ 2−ℓ, and

||vnℓ′ − vnℓ′′ ||Lp ≤ 2−ℓ for ℓ′, ℓ′′ ≥ ℓ. Now, all that remains is a diagnolization argument and to
extend the sequence, which completes the proof.
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1.6 Poincaré-Type Inequalities

Loosely speaking, a Poincaré-Type inequality is any inequality controlling a function using infor-
mation about the derivative, with a condition fixing the ambiguity introduced by the addition of a
constant under integration.

Theorem 1.28 (Poincaré Inequality). Let 1 ≤ p <∞, U ⊂ Rd bounded with C1 boundary. Then, for
u ∈W 1,p(U) where

´
U udx = 0,

||u||Lp ≤ cU ||Du||Lp

Proof. There are a few proofs of this theorem, ours uses compactness and an argument by con-
tradiction. Assume such a cU doesn’t exist, i.e. for all n ≥ 1, there exists ||un||Lp ≥ n||Du||Lp ,
and ´

U undx = 0. By normalization, we may assume that ||un||Lp(U) = 1. Then it must be that
||Du||Lp ≤ 1

n , and therefore, ||u||W 1,p(U) ≤ 2.
By the Rellich-Kondrachov theorem, however there must exist an Lp-convergent subsequence of

un, implying that ||un||Lp = ||u∞||Lp = 1. Introducing φ ∈ C∞
0 (U), we note also that there must

exist a subsequence unj converging to u. In this case then,
ˆ
U
unj∂kφdx = −

ˆ
U
∂k(unj )φdx = 0

since that norm goes as 1/nj . Thus, Du is 0 almost everwhere, and u is a constant. This contradicts
that ||u||Lp = 1, so we are done.

There are many more such inequalities, which were stated without proof.
• Freiderich Inequality: the boundary condition is instead u|∂U = 0. This can be proven using

both compactness, and the sobolev inequality forW 1,p
0 .

• Hardy’s inequality comes in two forms.
– If u ∈W 1,p(U) with u′|∂U = 0, then

|| 1

dist(∂U, x)
u(x)||Lp ≤ c||Du||Lp

– If u ∈W 1,p
0 , with p < d, then

|| 1
|x|
u(x)||Lp ≤ c||Du||Lp
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2 Linear Elliptic PDEs

2.1 Introduction to Linear Elliptic PDEs

Heuristically speaking, elliptic partial differential equations are generalizations of Laplace’s equation
−∆u = f . In particular, the sum−

∑
j ∂i∂j 7→ −

∑
j(−ξj)2 = |ξ|2 in Fourier space, and since |ξ| ≠ 0,

elliptic PDEs are invertible in fourier space. This transformation of the coefficients of the leading-
order operator is called the principal symbol of the operator.

Definition 14 (Elliptic Operators). A partial differential operator P is elliptic if the principal symbol
of P is invertible for all x in its domain, and ξ ̸= 0.

An important subcase of this definition is the case where u is a scalar function. In this case, the
ellipticity condition holds if and only if the coefficient aij in the operator aij∂i∂j is definite. We will
assume positive definiteness for simplicity. Furthermore, we define uniform ellipticity.

Definition 15 (Uniformly Elliptic Scalar Operator). An elliptic operator P = aij∂i∂j+. . . is uniformly
elliptic if ∃λ > 0 such that aijξiξj ≥ λ for all |ξ| = 1. Equivalently, the eigenvalues of aij must be
bounded from below.

Elliptic PDEs arise in a variety of applications. For example
• Methods in the calculus of variations often yield elliptic PDEs as optimizers.
• Evolutionary problems such as the incompressible Euler equation, with u : R3+1 → R3 the

velocity field of a fluid element, with pressure ρ, and incompressibility condition ∇u = 0.

∂tu+ u · ∇u+∇ρ = 0

In this case, incompressibility determines ρ, which we can see

∇(���*0
∂tu+ u · ∇u+∇ρ) = 0 ⇒ −∆ρ = ∇(u · ∇u)

The final expression is an elliptic PDE for ρ.

2.2 Boundary Value Problems

For the remainder of this section, we assume the scalar case in Rd≥2, with P a uniformly elliptic
PDO with sufficiently regular coefficients. U is a bounded, open, connected domain in Rd, with
sufficiently “nice” boundary. In particular, we will study the solveability of the Dirichlet boundary
value problem in H1(U), since we will need to use the trace theorem. Other BVP’s (for example
Neumann) require u ∈ H2, since they deal with prescribing derivatives on the boundary.

Finally, we also make a standard reduction to the case where u|∂U = 0, which is justified by
taking any extension of u beyond U , and subtracting it on the boundary.
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Definition 16 (Divergence-Form Operator). A partial differential operator P is of divergence-form if
it is expressed as

Pu = ∂i(a
ij∂ju) + ∂i(b

iu) + cu

2.2.1 Uniqueness

Our discussion of uniqueness depends on making an a-priori estimate.

Theorem 2.1. Suppose u ∈ H1(U) solves the Dirichlet problem, with a, b, c sufficiently regular. Then
there exist constants c, γ such that

||u||H1(U) ≤ c||Pu||H−1(U) + γ||u||L2(U)

Proof. The proof is an excercise in integration by parts of the divergence form.
ˆ
U
(Pu)udx =

ˆ
U
u(∂i(a

ij∂ju) + ∂i(b
iu) + cu)dx =

ˆ
U
−aij∂iu∂ju− bju∂ju+ cu2dx

The first term in the rightmost expression is bounded by uniform ellipticity: λ|Du|2 ≤ aij∂iu∂ju.
Thus, we have ´U fudx ≤ c||f ||H−1 ||u||H1 , which gives that (putting the entire expression with lower
order terms back in)

λ||Du||2L2 ≤ c||f ||H−1 ||u||H1 +

ˆ
U
|b||∂u||u|dx+

ˆ
U
|c||u|2dx

If we put b, c ∈ L∞, they can be factored out of the integral, which yields the desired bounds. We
can get optimal regularity for b ∈ Ld+ and c ∈ Ld/2+, but the discussion here was brief.

2.2.2 Existence

Missed this lecture due to being stuck in the Detroit airport. Nice.

2.3 Elliptic Regularity

As a prototypical example, suppose we have f ∈ Hk (or more generally, Ck,α) and −∆u = f in U .
Then for all V ⊆⊆ U , heuristically, we expect u to be more regular than f by 2 derivatives. This is the
so-called Elliptic Interior Regularity. We begin with a discussion of interior and boundary regularity
in L2, before moving on to L∞-based estimates (so-called Schauder estimates).

2.3.1 L2-Based Regularity

All of our L2 regularity theorems take place in Hilbert space. The prototypical elliptic PDE is Poisson’s
Equation −∆u = f . As an illustration of the proof techniques used throughout this section, consider
−∆u = f on a bounded domain U ⊂ Rd, with u ∈ H1(U). Clearly, we can’t just integrate by parts on
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U , since there will be boundary terms. In order to deal with this, introduce a smooth cutoff function
from some set V ⊆⊆ U to U c called ζ, and try an energy method calculation.

ˆ
U
fuζ2dx =

ˆ
U
−(∆u)uζ2dx

=
∑
j

ˆ
U
(∂ju)(∂j(uζ

2))dx

=
∑
j

ˆ
U
(∂ju)

2ζ2 + 2uζ(∂ju)(∂jζ)dx

=
∑
j

ˆ
U
(∂ju)

2(ζ)2 + 2uζ(∂ju)(∂jζ)dx

Rearranging, and applying Cauchy-Schwarz to the right-hand side, we have that
ˆ
U
|Du|2ζ2dx ≤

∣∣∣∣ˆ
U
fuζ2dx

∣∣∣∣+ 2

∣∣∣∣ˆ
U
uζ(Du) · (Dζ)dx

∣∣∣∣
Now, use Hölder’s inequality and the identity 1√

ϵ
a
√
ϵb = ab ≤ a2

2 + b2

2 , on the rightmost term to find

2

∣∣∣∣ˆ
U
(uζ)(Du ·Dζ)dx

∣∣∣∣ ≤ (2 ˆ
U
(|Du|ζ)2dx

)1/2(ˆ
U
(u|Dζ|)2dx

)1/2

≤ ϵ

ˆ
U
|Du|2ζ2dx+1

ϵ

ˆ
U
u2|Dζ|2dx

Choosing ϵ = 1/2, and substituting back in, we find that

1

2

ˆ
U
|Du|2ζ2dx ≤

∣∣∣∣ˆ
U
fuζ2dx

∣∣∣∣+ 2

ˆ
U
u2|Dζ|2dx

Note that if we assume u to be compactly supported in U , we may set the rightmost integral equal
to zero, since ζ can be chosen to be constant on sptu. Under this assumption, applying Hölder gives
the estimate

||Du||L2 ≤ 2||f ||L2 + 2||u||L2

As we will see, we want our right hand side to be in H−1, which means we should have introduced
a rougher (H−1) cutoff function ζ.

In order to secure higher-order regularity, we can commute derivatives with our integral equation
above, integrate by parts a bunch, and retrieve the result.

Interior Regularity For the following section, we let

Pu = −∂j(ajk∂ku) + bj∂ju+ cu (3)

with u : U → R where U is open in Rd. The coefficients a, b, c are all in L∞(U). Furthermore, a is
uniformly elliptic, i.e. there exists λ > 0 such that ∀x ∈ U , |a(x)| ≥ λ. Da ∈ L∞(U) as well.
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For the following proof, we need Difference Quotients.

Definition 17 (Difference Quotients). Let ek denote the kth unit vector, and h ∈ R. Then for a
function u on Rd, Dh

ku := u(x+hek)−u(x)
h .

Also worth noting is the identity Dh
j (u · v) = Dh

j (u(x))v(x)+u(x+h)Dh
j v(x), and the following

estimate regarding difference quotients.

Lemma 2.2. Let V ⊆⊆ U and u ∈W 1,p(U). Then if |h| < 1
2 dist(V, ∂U),

||Dhu||Lp(V ) ≤ C||Du||Lp(U)

If 1 < p <∞, u ∈ Lp(V )m and there exists C such that ||Dhu||Lp(V ) ≤ C, then u ∈W 1,p(V ) with
||Du||Lp(V ) ≤ C.

Proof. We can use the fundamental theorem of calculus to get an estimate.

u(x+ hek)− u(x) =

ˆ 1

0
∂ku(x+ thek)hekdt

|u(x+ hek)− u(x)| ≤ h

ˆ 1

0
|∂ku(x+ thek)|dt

ˆ
V
|u(x+ hek)− u(x)|pdx ≤ C

d∑
k=1

ˆ
V

ˆ 1

0
|Du(x+ thek)|pdtdx

=

d∑
k=1

ˆ 1

0

ˆ
V
|Du(x+ thek)|dxdt

The rest follows by approximation and applying the fundamental theorem.

Theorem 2.3 (H2 Elliptic Interior Regularity). Let u ∈ H1 be a weak solution to Pu = f on U , with
f ∈ L2(U), a ∈ C1(U), and b, c ∈ L∞(U).5 Then ∀V ⊆⊆ U , u is in H2(V ), and

||u||H2(V ) ≤ C
(
||f ||L2(U) + ||u||L2(U)

)
Proof. To begin, let ζ be a smooth cutoff function from V to U c. Furthermore, define g = f−bj∂ju−
cu, noting that since u is a weak (H1) solution to Pu = f , ⟨Pu, φ⟩ = ⟨f, φ⟩ for ever φ ∈ H1

0 (U). This
works, since f ∈ L2 ⊆ H−1, and the result we want to show is Pu ∈ H1−2 = H−1, H1

0 = (H−1)∗

is the appropriate dual pairing φ. Using our definition of g, and letting P̃ u = Pu− g an equivalent
starting point is the following:

⟨P̃ u, φ⟩ = ⟨g, φ⟩
5My treatment here follows Evan’s text more closely than lecture. I was having a hard time understanding where some

minus signs came from and decided the text proved a sharper result anyhow.
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Our first goal is to commute this equation with a difference quotient. Letting φ be a test function,

⟨Dh
l P̃ u, φ⟩ =

ˆ
−Dh

l (∂j(a
jk∂ku))φdx

=

ˆ
Dh

l (a
jk∂ku)∂jφdx

=

ˆ
∂j(a

jk∂ku)(D
−h
l φ)dx

= ⟨P̃ u,−D−h
l φ⟩

Given that we derived theH1-estimate by choosing φ = uζ2 in the case of Poisson’s equation, a good
place to start might be by choosing one higher derivative of u in the test function, i.e. something
like φ = |Du|ζ. Of course, using this approach is going to put too many derivatives on u, and of
course we can no longer make use of the fact that u ∈ H1. With this in mind, we instead are going
to choose our test function to be φ = ζ2Dh

l u, and examine limiting behavior.
With our commutation argument, we should evaluate the following:

ˆ
U
−gD−h

l (ζ2Dh
l u)dx =

ˆ
U
∂j(a

jk∂ku)D
−h
l (ζ2Dh

l u)dx

=

ˆ
U
−(ajk∂ku)D

−h
l (∂j(ζ

2Dh
l u))dx

=

ˆ
U
Dh

l (a
jk∂ku)(∂j(ζ

2Dh
l u))dx

=

ˆ
U
(ajk(x+ h)Dh

l ∂ku+ ∂kuD
h
l a

jk)(2Dh
l uζ∂jζ + ζ2Dh

l ∂ju)dx

= A+B

Here, we define

A =

ˆ
U
ajk(x+ h)ζ2Dh

l ∂kuD
h
l ∂judx

B =

ˆ
U

[
2(Dh

l u)a
jk(x+ h)ζ(Dh

l ∂ku)(∂jζ) + 2ζ(Dh
l u)(D

h
l a

jk∂jζ∂ku) + ζ2(Dh
l a

jk)(Dh
l ∂ju)∂ku

]
dx

We can get a lower bound on A by applying the uniform ellipticity condition:

A ≥ λ

ˆ
U
|Dh

l Du|2ζ2dx

For B, we use that fact that a, b, c are all bounded6, as is the derivative of ζ7 to deduce that

|B| ≤ C

ˆ
U
ζ|Dh

l Du||Dh
l u|+ ζ|Dh

l u||Du|+ ζ|Dh
l Du||Du|dx

6This isn’t technically implied by the C1-continuity of ajk, but I think it has to be true to justify this leap.
7Urysohn’s lemma on R guarantees this.
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Applying Cauchy’s inequality (ab ≤ 1/2(a2 + b2)) twice yields the further estimate

|B| ≤ ϵ

ˆ
U
ζ2|Dh

l Du|2dx+
C

ϵ

ˆ
U
|Dh

ku|2 + |Du|2dx

Using the estimate that forW ⊆⊆ U but completely contains V , ||Dhu||Lp(W ) ≲ ||Du||Lp(U) (evans
5.8.2), we can further restrict this estimate

|B| ≤ ϵ

ˆ
U
ζ2|Dh

l Du|2dx+
2C

ϵ

ˆ
U
|Du|2dx

Picking appropriate ϵ = λ/2, we can subtract |B| from A to obtain the lower bound

A+B ≥ λ

2

ˆ
U
|Dh

l Du|2ζ2dx− C

ˆ
U
|Du|2dx (4)

Now, we wish to place an estimate on the other side of the equation, namely ⟨g, φ⟩. Factoring
out constants yields the estimate∣∣∣∣ˆ

U
gφdx

∣∣∣∣ ≤ C

ˆ
(|f |+ |Du|+ |u|)(|φ|)dx (5)

Using the same estimate from Evans 5.8.2 as above, we can deduce an estimate on ´U |φ|2, and then
apply Cauchy’s inequality. Choosing V ⊆⊆W ⊆⊆ U appropriately, we can estimate

ˆ
U
|φ|2dx ≤ C

ˆ
U
|D(ζ2Dh

l u)|2dx

≤ C

ˆ
W

|Dh
l u|2 + ζ2|Dh

l Du|2dx

≤ C

ˆ
U
|Du|2 + ζ2|Dh

l Du|2dx

Now apply Cauchy’s inequality to the individual terms of Equation 5 to obtain the estimate∣∣∣∣ˆ
U
gφdx

∣∣∣∣ ≤ ϵ

ˆ
U
ζ2|Dh

l Du|2dx+
C

ϵ

(ˆ
U
f2 + u2 + |Du|2dx

)
(6)

With a choice of ϵ = λ/4, we can combine Equations 6 and 4 to find
ˆ
V
|Dh

l Du|2dx ≤
ˆ
U
|Dh

l Du|2dx ≤ C

ˆ
U
|f |2 + |u|2 + |Du|2dx

Thus, by the second half of the estimate of Evans, we have that Du is locally H1, and so u is locally
H2. Furthermore, by splitting up C appropriately, we may rewrite the above estimate as

||u||H2(V ) ≤ C(||f ||L2(U) + ||u||H1(U))

32



Theorem 2.4 (Hk Interior Elliptic Regularity). Let u ∈ Hk(U) be a weak solution to Pu = f on U ,
with f ∈ Hk−2(U), b, c ∈ L∞(U), with |Dαb|+ |Dαc| bounded for all |α ≤ k− 2, and a ∈ C1(U) with
|Dαa| bounded for all |α| ≤ k − 1.

Then for all V ⊆⊆ U , there exists C such that

||u||Hk(V ) ≤ C(||f ||Hk−2(U) + ||u||L2(U))

Proof. The proof uses induction on k, with k = 2 being the base case of the previous theorem. The
full proof can be found in Evans text.

Theorem 2.5 (H2BoundaryRegularity). Let u ∈ H1
0 (U) be a weak solution to Pu = f on U , with

f ∈ L2(U), a ∈ C1(U), b, c ∈ L∞(U), and ∂U of class C2. Then for all V ⊆⊆ U , u ∈ H2(V ), and

||u||H2(V ) ≤ C(||f ||L2(U) + ||u||L2(U))

.

Proof. In order to prove this, let’s apply the method from Theorem 2.3 and see what goes wrong.
Omitting the contributions of b, c as before, we find that

∂lf = −∂l∂j(ajk∂ku)

This is fine, with the exception that ∂lf can’t be evaluated transversal to ∂U . With this in mind, our
goal is to take that d − 1 admissible derivatives, and use them to derive an algebraic condition on
∂f which yields a nice regularity result.

Since ∂U is regular enough, it suffices to consider the special case where sptu ⊂ B 1
2
(0) ∩ Rd

+,
where U = B1 ∩Rd

+. In thise case, commuting ∂l for any 1 ≤ l ≤ d− 1 yields exactly the same proof
as the previous case, as the trace assumption gives a boundary term which goes to 0.

Now, we only need to control ||ζ2∂2du||L2 , which we can accomplish via the following argument.
Since ajk is uniformly elliptic, ajkξjξk ≥ λ|ξ|2. Thus, add ≥ λ. Separating out the add term, we find

f == −∂d(add∂du)− ∂j(a
jk∂ku)(1− δjd)(1− δkd)

= −add∂2du− (∂da
dd)∂du− ∂j(a

jk∂ku)(1− δjd)(1− δkd)

Dividing by add is legal, since its bounded from below, so we arrive at

∂2du =
1

add
(f + (∂da

dd)∂du+ ∂j(a
jk∂ku)(1− δjd)(1− δkd))

Taking the L2 norm yields the desired control.
This argument extends to the general case via a partition of unity, as in the proof of extension

theorems for Sobolev Spaces. There are a few important caveats.
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• We must check each boundary straightening actually straightens the boundary.

• We must check that the ellipticity bound holds in the new variables, as well as the bounds on
the derivatives. This holds by conjugating a with the jacobian.

• The C2 property of ∂U is necessary to undo this boundary straightening, as derivatives of the
jacobian appear.

2.3.2 Schauder Estimates

This section was pretty short. Professor Oh mentioned he would post notes on Schauder estimates,
and then never did, so this is really more of a speedrun through the theorems. We do touch on
Littlewood-Payley theory, which comes back to play a big role later.

First, we (re)state the definition of a Hölder Space. Recall the definition of the Hölder Norm
(with a small change of notation):

||u||C0,αU = [u]Cα(U) + ||u||L∞(U)

Definition 18 (Hölder Space). The Hölder Space Ck,γ(U) is defined as

Ck,γ =

u :
∑
|α|≤k

||Dαu||L∞(U) +
∑
|α|=k

[Dαu]C0,γ <∞


Here, we just state a bunch of theorems, and list the ideas of proof techniques.

Theorem 2.6 (Divergence form interior Schauder estimate). Let U ⊆ Rd be open, with u ∈ Ck,α(U)8

a solution of f = −∂j(ajk∂ku), where a is uniformly elliptic everywhere, a ∈ Ck−1,α(U), f ∈ Ck−2,α(U),
and 0 < α < 1, k ≥ 1. Then ∀V ⊆⊆ U , there exists a constant CV such that

||u||Ck,α(V ) ≤ CV (||u||C0,α(U) + ||f ||Ck−2,α(U))

A similar estimate exists for non-divergence equations, with the regularity of a lowered toCk−2,α

(since one derivative moves off a.

Theorem 2.7 (Non-divergence form interior Schauder estimate). Let U ⊆ Rd be open, with u ∈
Ck,α(U) a solution of f = −ajk∂j∂ku), where a is uniformly elliptic everywhere, a ∈ Ck−2,α(U),
f ∈ Ck−2,α(U), and 0 < α < 1, k ≥ 1. Then ∀V ⊆⊆ U , there exists a constant CV such that

||u||Ck,α(V ) ≤ CV (||u||C0,α(U) + ||f ||Ck−2,α(U))

8This assumption is an apriori estimate.
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Theorem 2.8 (Divergence form boundary Schauder estimate). Let U ⊆ Rd be bounded, with ∂U ∈
Ck,α. Let u ∈ Ck,α(U) a solution of f = −∂j(ajk∂ku), where a is uniformly elliptic everywhere, a ∈
Ck−1,α(U), f ∈ Ck−2,α(U), and 0 < α < 1, k ≥ 1. Then

||u||Ck,α(U) ≤ CV (||u||L0(U) + ||f ||Ck−2,α(U))

The non-divergence boundary estimate is exactly what you would expect. Overall, the strategy
for doing these proofs proceeds in three steps:

1. Obtain the result in the constant coefficient case.

2. Apply the method of freezing coefficients (locally ajk is regular enough to be treated as con-
stant. We did not cover this in lecture.)

3. To get the boundary result, use boundary straightening and a partition of unity to extend the
half-ball case everywhere.

We covered two approaches in the constant coefficient case: Littlewood-Payley theory and Compact-
ness + Contradiction.
Corrolary (Constant-Coefficient Interior Regularity). LetU be open, and u be a solution to−∂jajk∂ku =

−ajk∂j∂ku = f where a is constant and elliptic on Rd. For u ∈ Ck,α
0 (Rd), f ∈ Ck−2,α(Rd),

||u||Ck,α(Rd) ≤ c(||f ||Ck−2,α(Rd))

Note that the compact support condition of u gets rid of the C0 term.
Definition 19 (Littlewood-Paley Projection). Define the cutoff function

χ≤0(ξ) =

{
1 |ξ| ≤ 1

0 |ξ| ≥ 2

Call χ≤k(ξ) = χ≤0

(
ξ
2k

)
. Then we define χk = χ≤k+1 − χ≤k, which is a smooth cutoff function with

sptχk = {ξ : 2k+1 ≥ |ξ| ≥ 2k}. Then for v ∈ S(Rd), we define the Littlewood-Paley Projection of v
to be the following:

Pk(v) = F−1[χkF [v]]

where it is easily seen that
v = P≤k0v +

∑
k>k0

Pk(v)

For sufficiently regular v, limk0→∞ P≤k0(v) = 0. Also note, that sptχk is essentially all ξ such
that |ξ| ≃ 2k.
Lemma 2.9 (Littlewood-Paley Characterization of C0,α). For v ∈ C0,α(Rd),

[v]C0,α ≃ sup
k∈Z

{2kα||Pkv||L∞}
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Proof. To show the ≳ direction, it suffices to consider k = 0. In other words, we want to show that
|P0v| ≲ [v]C0,α. Noting that P0(v) =

´
χ̌0(x− y)v(y)dy is finite and definite since v is Schwartz, we

may write ˆ
χ̌0(x− y)(v(y)− v(x))dy ≤ [v]C0,α

ˆ
χ̌0(x− y)|x− y|αdy

The final step of factoring out the seminorm is valid after taking a supremum inside the integral.
To see the other direction, consider

v(x)− v(y) = P≤k0v(x)− P≤k0v(y) +
∑
k>k0

Pkv(x)− Pkv(y)

Choose k0 so that |x− y| ≃ 2−k0 . Then, fixing k for a moment, we have

||Pkv||L∞ ≃ sup
x

{
∥
ˆ
χk(ξ)e

iξx

ˆ
v(y)e−iξydydξ∥

}
ˆ
χk(ξ)e

iξx

ˆ
v(y)e−iξydydξ ≲ 2−k

¨
v(y)eiξ(x−y)dydξ ≲ 2−k sup

x̸=y
{|x− y|α|v(x)− v(y)|}

The final step is a geometric argument, which only holds for the special case 0 < α < 1. The rest
follows from factoring the |x− y|α into the 2−k, and dividing again.9

Finally, summing over k gives
∑
k≥k0

||Pkv||L∞ ≲
∑
k≥k0

2−kα[v]C0,α ≃ |x− y|−α[v]C0,α

Using this, we take

|P≤k0v(x)− P≤k0v(y) ≤ ||∇P≤k0v||L∞ |x− y|

≤
∑
k≤k0

||∇Pkv||L∞ |x− y|

≲
∑
k≤k0

2k−kα[v]C0,α

The rest follows from taking a supremum, noticing that the sum k ≤ k0 is a finite sum.

Now, using the lemma, we are ready to attempt a proof of the constant coefficient interior regu-
larity theorem.

L-P theory. We take
P (Pku) = Pkf 7→F ajlξ

jξl(P̂ku) = P̂kf

thus, by uniform ellipticity we may write that (for χ̃k supported on a slightly wider annulus than
9I’m not 100% on the rest of this proof, but the details were pretty fast in lecture.
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χk,
P̂ku =

1

ajlξjξl
P̂kfχ̃k =

22k

ajlξjξl
P̂kf

1

22k

where we call ηk := 22k

ajlξjξl
. Taking an inverse fourier transform, Pku ends up as η̌k ∗ Pkf2

−2k, and
we have then that

||Pku||L∞ ≤ c2−2k||Pkf ||L∞ ≲ ||f ||Ck−2,α(Rd)

We can get another proof by using a compactness argument to induce a contradiction.

Compactness + Contradiction. Assume for contradiction’s sake that there exist some sequence of
functions and coefficients ajkn , un, fn such that Pnun = fn, and [un]C2,α = 1, [fn]C0,α ≤ 1

n . After
translation, we can take some point |ηn| = 1, and say |D2un(ηn)−D2un(0)| ≥ c > 0

Second, the second-order taylor expansion of u, with the first-order term absorbed into f̃n still
satisfies

Pnvn = Pn(un − 1

2
x2D2un(x)) = f̃n

Thus, in the limit, Pv = 0, with [D2v] ≤ 1 somewhere. Thus, somewhere, D2v(η) ̸= 0 by compact-
ness. By Liouvilles theorem, v must be a constant, which contradicts D2v ̸= 0.

2.4 Maximum Principles

Importantly, the principles dealt with in this section require that our equation be Scalar. Although
the results of the previous sections can be extended to nonscalar elliptic PDEs, maximum priniples
in general cannot. For the duration of this discussion, we assume P is of non-divergence form, with
coefficients a, b, c such that a is elliptic, and all are bounded.

Pu = (−ajk∂j∂k + bj∂j + c)u

Figure 4: A Convex Function
achieves it’s maximum on the
boundary of it’s domain.

The basic idea here is to generalize the concept of a convex
function on R. In 1 dimension, the principle for convex functions
can be stated as: for a convex function u : [0, 1] → R max[0,1] u =

max∂[0,1] u. In as many words, convex functions either achieve their
maximum value on the boundary of their domains, or they are con-
stant.

There are two appropriate generalizations of this idea to mul-
tiple dimensions. The first is to require the Hessian matrix to be
positive definite. However, this ends up being too restrictive, since
the existence of the Hessian requires twice-differentiability to begin with. The second is to consider
functions which are subsolutions to elliptic PDEs, which is the approach considered here.
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Definition 20 (Classical Subsolution). u ∈ C2(U) is a classical subsolution to the equation Pu = 0

if Pu ≤ 0 on U .

Theorem 2.10 (Weak Maximum Principle). Let u ∈ C2(U) ∩C(U), where U ⊆ Rd is open, bounded
and connected, and Pu ≤ 0, with c = 0. Then maxU u = max∂U u.

Proof. Consider a strict subsolution Pu < 0, and assume for the purpose of contradiction that it
attains a local maximum at x0 ∈ Uo. Then Du(x0) = 0, and D2u(x0) has no positive eigenvalues by
the second derivative test. But

Pu(x0) = −ajk∂j∂ku(x0) +������:0
bj∂ju(x0)

= −ajk∂j∂ku(x0)

= − tr
(
aD2u

)
Since a > 0 by uniform ellipticity, and D2u ≤ 0 by the derivative test, − tr

(
aD2u

)
≥ 0, so Pu(x0) ≥

0. This contradicts the strict subsolution property, so we have shown that no interior local maxima
exists for strict subsolutions.

Considering now Pu ≤ 0, we approximate uϵ = u + ϵv, where v is a strict subsolution Pv < 0.
Then uϵ → u on U and is a strict subsolution, so the previous argument applies.

In the preceding proof, flipping the signs gives the weak minimum principle for supersolutions
by an identical proof. If u is a solution Pu = 0, then u is clearly both a sub and supersolution. Thus,
Pu = 0 ⇒ maxU |u| = max∂U |u|.

Corrolary (WMP for c ≥ 0). Under otherwise identical conditions as the Weak Maximum Principle,
with c ≥ 0, we have that {

Pu ≤ 0 ⇒ maxU u ≤ max∂U u
+

Pu ≥ 0 ⇒ minU u ≤ min∂U (−u−)

where

u+ =

{
u(x) ∀x : u(x) ≥ 0

0 otherwise
u− =

{
0 otherwise

−u(x) ∀x : u(x) ≤ 0

Proof. Let V = {x ∈ U : u(x) > 0}. Cut V into components and individually apply the maximum
principle to Qu = Pu− cu on V . For Q, maxV u ≤ max∂V u, which implies the rest.

Theorem 2.11 (Comparison Principle). LetU be open, bounded and connected inRd, with P satisfying
the usual hypotheses, and c ≥ 0. Let u, v ∈ C2(U) ∩ C(U), with Pu ≤ 0, Pv ≥ 0 on U , and u ≤ v on
∂U . Then u ≤ v on all of U .

Proof. u−v is a subsolution, so an application of the Weak Maximum Principle yields the result.
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Theorem 2.12 (Strong Maximum Principle). Let U be open, bounded and connected in Rd, with P
satisfying the usual hypotheses, and c = 0. Let u ∈ C2(U) ∩ C(U), and let Pu ≤ 0. If at any x0 ∈ Uo

u(x0) = maxU , then u is constant.

∂U
x

x0
η

Figure 5: ∂u
∂η is increasing outward.

Our proof of this theorem will make use of
Hopf ’s Lemma, which is included below.

Lemma 2.13 (Hopf ’s Lemma). Let U be open,
bounded and connected in Rd. For some x0 ∈ U ,

i. There exists x ∈ U , 0 < r ∈ R such that
Br(x) ⊆ U , and Br(x) ∩ ∂U = {x0}

ii. u(x0) ≥ u(x) for all x ∈ Br(x), and
u(x0) > u(x) for all x ∈ Br(x)

o

Then, letting η be the unit normal outward pointing vector to Br(x),

∂u

∂η

∣∣∣∣
x=x0

> 0

Proof. Here, our goal is to compare a supersolution to a subsolution. WLOG, we set x to be the
origin, and write the function v(x) = e−µr2 − e−µ|x|2 , so that v|∂Br(0) = 0. Moreover, Pv ≥ 0 on
V = Br \B r

2
. Consider the function w = ϵv+u(x0). Then on V , Pw = P (ϵv)+Pu(x0) = P (ϵv) ≥ 0

for µ≫ 0. On ∂Br, w = u(x0) ≥ u, and w = ϵv+u(x0). Therefore, u(x0) > u(x)− ϵv for sufficiently
small ϵ, implying that w ≥ u. By the comparison principle, w > u on V , so ∂u

∂η ≥ ∂w
∂η > 0, and we’re

done (checking that ∂w
∂η > 0 is not difficult).

Now, we can prove the strong maximum principle.

Proof of the Strong Max Principle. Consider V = {x ∈ U : u(x) < supU u}. Let x0 ∈ U , and let u(x0)
attain the maximum. Then find the largest r such that Hopf ’s lemma may be applied to x ∈ V ,
where Br(x) ⊂ V , and x0 ∈ Br(x1) ∩ ∂V . Then by Hopf ’s lemma, ∂u

∂ν > 0, but this contradicts that
u(x0) is a local maximum. Thus, V must be empty, i.e. u(x) is constant.

I missed a lecture on March 11. The following theorem is stated without proof, and a proof can
be found in Lerner’s Carleman’s Estimates.

Theorem 2.14 (Aronszajn’s theorem). Let P be an elliptic operator

Pu = −∂j(ajk∂ku) + bj∂ju+ cu

If Pu = 0 in U , and u = 0 on an open subset ofW ⊆ U , then u ≡ 0 on U .
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3 Linear Hyperbolic PDEs

The precise meaning of Hyperbolicity varies a bit, and arguably only precise at all in the constant
coefficient case. However, there are a few guidelines and heuristics that can be used to establish a
working definition.

• Hyperbolic PDEs are typically evolutionary equations, in that they have a contextually clear
time variable. We will notate this by settings x0 = t, and writing R1+d.

• The number of t-derivatives is the same as the number of ∇-derivatives (spatial).
– e.g. the classical wave equation (∂2t −∆)ϕ = 0.
– e.g. any transport equation (∂t +Xj∂j)ϕ = 0.
– not e.g. the heat equation (−∂t +∆)u = 0.
– not e.g. the Schrödinger equation (i∂t +∆)u = 0.

• Well-Posedness of the initial value problem (where N is the order of ∂t):{
Pϕ = 0

(ϕ, ∂tϕ, . . . , ∂
N−1
t ϕ) = (g0, g1, . . . gN−1)

In the context of this class, it will usually be best to find algebraic conditions guaranteeing the well-
posedness condition. There is also a close relationship between hyperbolicity and the existence of
energy estimates.
Example (Linear, Constant Coefficient Systems). Let Φ : R1+d → Rn, with A a an n × n matrix of
d× d matrices.10

∂tΦ+Aj∂xjΦ = F

How do we guarantee uniqueness of the initial value problem? One approach would be to use an
energy estimate to place algebraic conditions on A.11 Here, we use the notation that indices in
parentheses (e.g. ϕ(k)) range over 1, . . . , n, while indices not in parentheses range over 1, . . . , d.

ˆ
Rd

ϕ(k)F(k)dx =

ˆ
Rd

ϕ(k)∂tϕ(k) + ϕ(k)(Aj∂xj )(k)ϕ(k)dx

=
1

2

(ˆ
Rd

|Φ|2dx+

ˆ
Rd

(Aj)
(k)
(ℓ)ϕ

(k)∂xjϕ(ℓ)dx−
ˆ
Rd

(Aj)
(k)
(ℓ) (∂xjϕ(k))ϕ(ℓ)dx

)
=

1

2

(ˆ
Rd

|Φ|2dx
(
(Aj)

(k)
(ℓ) − (Aj)

(ℓ)
(k)

)
ϕ(k)∂jϕ

(ℓ)

)

We can see from this final integral term that when (Aj)
(k)
(ℓ) is symmetric, we get a nice energy estimate

of the form 1
2 ||Φ||

2
L2
x
. This is the type of algebraic constraint yielding energy estimates we seek.

10There’s definitely a more elegant understanding of this, but this is sufficient for our use case.
11I think professor Oh may have implicitly assumed that Aj is a diagonal matrix, and there really should be a Aj

k∂xk in
here somewhere.
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As an aside, the trick we used in the integration above to obtain our symmetry result was simply
to split the second term in half, and integrate only half of it by parts.

Theorem 3.1. If A is a constant coefficient operator

∂tΦ+Aj∂xjΦ = F

is hyperbolic (i.e. the initial value problem is well-posed in L2) if and only if A is symmetric.

The details of this theorem will be explored later, but it follows essentially from using the energy
estimate to show uniqueness.

Finding a non-hyperbolic counterexample is an excercise in Fourier analysis, since non-symmetry
produces plane wave solutions.
Example (First order Wave Equation). We can make□ϕ = f into a first order equation by converting
to the system ϕ = ∂tϕ, so we have ∂tψ = ∆ϕ− f . Then

∂t

[
ϕ

ψ

]
=

[
0 1

∆ 0

][
ϕ

ψ

]
−

[
0

f

]

After a fourier transform and subsequent diagonalization

̂
∂t

[
ϕ

ψ

]
=

[
0 1

−|ξ|2 0

] [̂
ϕ

ψ

]
−

[̂
0

f

]
=

[
i|ξ| 0

0 −i|ξ|

] [̂
ϕ

ψ

]
−

[̂
0

f

]

The energy estimate holds in the diagonalized variables, but is no longer unique.

3.1 Variable Coefficient Wave Equations

The reference for this section is Hans Ringström’s The Cauchy Problem in General Relativity, Chapters
6 and 7. Our objective is to derive energy estimates for{

Pϕ = f R+ × Rd

(ϕ, ϕ̇) = (g, h) {t = 0} × Rd
(7)

A preliminary and important tool we will use frequently throughout this section is Grönwall’s in-
equality.

Theorem 3.2 (Grönwall’s Inequality). Suppose E(t) ∈ Ct([0, T ]), with E ≥ 0, r(t) ∈ L1
t ([0, T ]),

r ≥ 0, and

E ≤ E(0) +

ˆ t

0
r(t′)E(t′)dt′

Then
E(t) ≤ E(0) exp

(ˆ t

0
r(t′)dt′

)
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Proof. This method of proof is known as the Bootstrap method. Essentially, the argument goes by
plugging the right-hand side of the result into the hypothesis, and deriving a stronger result which
in turn proves the assumption. Let t be some time 0 ≤ t < T .

E(t) ≤ E0 +

ˆ t

0
r(τ)E(τ)dτ

≤ E0 + E0

ˆ t

0
r(τ) exp

(ˆ τ

0
r(t′)dt′

)
dτ

Now, we make a change of variables dR(τ) = r(τ)dτ . Directly integrating the previous expression
yields

E(t) ≤ E0 + E0

(
exp

(ˆ t

0
r(t′)dt′

)
− 1

)
= E0 exp

(ˆ t

0
r(t′)dt′

)
If instead, before the change of variables we fix τ < t ≤ T , we have essentially completed the

entire proof.

We now introduce some notation that will be used in describing variable coefficient wave equa-
tions. First, we set the operator

Pϕ = ∂µ(g
µν∂νϕ) + bν∂νϕ+ cϕ

Definition 21. Themetric gµν is called lorentzian if it is symmetric, and has signature (−1, 1, . . . , 1).
For our description of wave equations, g is assumed lorentzian.

Definition 22. We use the Einstein Summation Convention. Greek indices run over {0, . . . , d} (i.e.
all variables), and latin indices run over {1, . . . , d} (i.e. spatial variables). Repeated indices imply
summation, et cetera.

The overall idea to obtain energy inequalities is to multiply by ∂tϕ, and integrate by parts. The
algebra here is a bit involved, so we treat only the second-order terms.

∂µ(g
µν∂νϕ)∂0ϕ = (−∂20ϕ)∂0ϕ+ ∂j(g

jk∂kϕ)∂0ϕ

= ∂0

(
−1

2
(∂0ϕ

2)

)
+ ∂j

(
gjk∂kϕ∂0ϕ

)
− (gjk∂kϕ)∂j∂tϕ

= −1

2
∂0

(
(∂0ϕ)

2 + gjk∂jϕ∂kϕ
)
+ ∂j(g

jk∂kϕ∂0ϕ) +
1

2
(∂0g

jk)∂jϕ∂kϕ

Now, we integrate by parts over the region Rt1
t0
= (t0, t1)×Rd, assuming a vanising boundary term.
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We denote the Cauchy hypersurface Σt = {{t} × Rd}.
ˆ
Rt1

t0

∂µ(g
µν∂νϕ)∂0ϕdxdt

= −
ˆ
Σt1

1

2

(
(∂0ϕ)

2 + gjk∂jϕ∂kϕ
)
dx+

ˆ
Σt0

1

2

(
(∂0ϕ)

2 + gjk∂jϕ∂kϕ
)
dx

+

�����������������:0

lim
r→∞

ˆ t

0

ˆ
∂Br

νj(g
jk∂kϕ∂0ϕ)dAdt

This is our desired conservation law! At times t1 and t0, ||Dϕ||L2 is the same (contracted w/ the
metric)! We now use this to prove the following lemma.

Lemma 3.3. For ϕ ∈ CtH
1

sup
t∈[0,T ]

||ϕ⃗||H1 ≤ CT

(
||ϕ(t = 0)||H1 +

ˆ t

0
||Pϕ||L2dt

)
Proof. Using the energy law we derived above, define the energy of the solution ϕ to be a function
of time

E[ϕ](t) =
1

2

ˆ
Σt

(∂tϕ)
2 + ∂jϕg

jk∂kϕdx

Then,

E[ϕ](t1) = E[ϕ](0)−
¨

Rt1
0

∂µ(g
µν∂νϕ)∂tϕdxdt+

1

2

¨
Rt1

0

(∂tg
jk)∂jϕ∂kϕdxdt

= E[ϕ](0) +

¨
Rt1

0

(Pϕ)∂tϕdxdt+

¨
Rt1

0

∂tϕ(b
µ∂µϕ+ cϕ+ (∂tg

jk)∂jϕ∂kϕ)dxdt

The final term represents an error of sorts, so we define it thusly:

E t1
0 =

¨
Rt1

0

|∂tϕ(bµ∂µϕ+ cϕ+ (∂tg
jk)∂jϕ∂kϕ)|dxdt

Then, we have from Grönwall’s inequality that

sup
t∈[0,T ]

E[ϕ](t) ≤ E[ϕ](0) + sup
t∈[0,T ]

∣∣∣∣∣
¨

RT
0

(Pϕ)∂tϕdxdt

∣∣∣∣∣+ ET
0

Note also that
ˆ
Rd

|ϕ(t)|2dx = 2

ˆ t

0

ˆ
Rd

∂tϕϕdxdt ≤ 2

ˆ
0
|E(t′)|1/2

ˆ
|ϕ|2dxdt′ +

ˆ
|ϕ|2(0)dx
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A Frequently Cited Theorems and Definitions

A.1 Real Analysis

Theorem A.1 (Existence of Smooth Partitions of Unity).

A.2 Functional Analysis

Definition 23. Let X be a real vector space. A map p : X → R is called a sublinear functional if it
satisfies the following for all x, y ∈ X:

1. p(x+ y) ≤ p(x) + p(y),

2. For all λ ≥ 0, p(λx) = λp(x).

Theorem A.2 (Hahn-Banach). Let X be a real vector space, p a sublinear functional on X, M a
subspace of X, and f a linear functional onM such that f(x) ≤ p(x) for all x ∈ M . Then there exists
a linear functional F on X such that F (x) ≤ p(x) for all x ∈ X, and F|M = f .

Proof. The following proof is due to Folland. We first show that for x ∈ X \M , f may be extended
to a linear functional g onM + Rx which satisfies g(y) ≤ p(y). For y1, y2 ∈M , we have

f(y1) + f(y2) = f(y1 + y2) ≤ p(y1 + y2) ≤ p(y1 − x) + p(x+ y2)

Rearranging gives
f(y1)− p(y1 − x) ≤ p(x+ y2)− f(y2)

Since this applies to every y1, y2 ∈M , we have

sup
y∈M

{f(y)− p(y − x)} ≤ inf
y∈M

{p(x+ y)− f(y)}

Let α be any number which satisfies

sup
y∈M

{f(y)− p(y − x)} ≤ α ≤ inf
y∈M

{p(x+ y)− f(y)}

and define g : M + Rx → R by g(y + λx) = f(y) + λα. g is linear by the linearity of f and
multiplication by λ. Furthermore, g|M = f , since any input inM has λ = 0, which gives g(y) ≤ p(y)

for y ∈M . Moreover, if λ > 0, and y ∈M , we have

g(y + λx) = λ
[
f
(y
λ

)
+ α

]
≤ λ

[
f
(y
λ

)
+ p

(
x+

y

λ

)
− f

(y
λ

)]
= p(y + λx)

If instead, we say λ = −µ < 0,

g(y + λx) = µ

[
f

(
y

µ

)
− α

]
≤ µ

[
f

(
y

µ

)
− p

(
−x+

y

µ

)
− f

(
y

µ

)]
= p(y + λx)
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So, we have g(z) ≤ p(z) for all z ∈M + Rx.
Importantly, the above logic doesn’t really depend on the fact x ∈ X \M . If F is any linear ex-

tension of f , then F ≤ p on it’s domain, which shows that the domain of a maximal linear functional
satisfying F ≤ p must be X. The family F of linear extensions F of f satisfying F ≤ p is partially
ordered by inclusion when we consider maps from subspaces of X to R as subsets of X × R. Since
the union of any increasing family of subspaces of X is also a subspace of X, the union of a linearly
ordered subfamily of F also lies in F . So, we may invoke Zorn’s lemma to guarantee the existence
of a maximal element F ∈ F , which completes the proof.

Theorem A.3 (Open Mapping). Let X,Y be Banach spaces. If T ∈ L(X,Y ) is surjective, then T maps
open sets to open sets.

Proof. See Folland 5.10.

A.3 Lp Spaces

Theorem A.4 (Hölder’s Inequality).

Theorem A.5 (Minkowski Inequality).
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